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Introduction

Some example problems are presented in the following.

Assume that your goal is to design a rational agent, in the form
of a computer program, capable of autonomously solving them.

Remember: a rational agent is a system that acts rationally,
according to a well-defined objective.
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Missionaries and cannibals

A classic AI toy-problem: three missionaries and three cannibals
must cross a river on a boat that can only hold two people,
without leaving more cannibals than missionaries on either side of
the river. How can all six get across the river safely?
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Game playing: 15-puzzle

Another classic AI’s toy-problem: transform an array of tiles from
an initial configuration into a given, desired configuration, by a
sequence of moves of a tile into an adjacent empty cell.

A more challenging goal: find the shortest of such sequences.

An example:

13 10 11 6
5 7 4 8
1 14 9
3 15 2 12

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15

initial configuration desired configuration
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Game playing: checkers and chess

Two historical problems addressed by many researchers since the
early days of AI (chess has been named the “Drosophila of AI”).
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Robot navigation

A real-world problem addressed since mid–1960s.

Left: Shakey the robot (1968). Right: formalisation of a navigation
problem for Shakey: finding a route from R to G made up of straight line
segments, possibly the shortest one, avoiding obstacles (black polygons).
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Route finding in maps

Find a route from Arad to Bucharest using the information shown
in the map below.

A more challenging version: find the shortest route.
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map of part of Romania.
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Common features of the above problems

Although the above problems may seem very different from each
other, they share some high-level features that allow one to solve
them using the same approach.

Main feature: a clear goal can be defined, as a set of desired
“world states”, together with a set of available “actions”, each one
leading from one state to another.

Once the goal is defined, the task is to search for a sequence of
actions that lead to a goal state. Hence the name “search
problem”.

This requires one to suitably define the actions and the states of
a given problem.
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A framework for search problems

Problems exhibiting the above characteristics can be formalized as
follows:

1. Goal formulation: what are the desired “world states”?
2. Problem formulation:

– what are the actions to consider?
– what are the states to consider?

The crucial point in this step is to find a proper level of
abstraction, by removing irrelevant details.

Under the above formulation:
▶ the solution of a problem is a sequence of actions that lead

to a goal state
▶ the process of looking for a solution is called search
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Goal and problem formulation: examples

15-puzzle

13 10 11 6
5 7 4 8
1 14 9
3 15 2 12

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15

initial configuration desired configuration

▶ goal: getting to the desired tile configuration (possibly, by the
shortest sequence of moves)

▶ states: each possible 16! tile configurations
▶ actions: moving the n-th tile (n = 1, . . . , 15) to one of the

adjacent cells (two, thee or four), if empty
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Goal and problem formulation: examples

Route finding in maps
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Figure 3.2 FILES: figures/romania-distances.eps (Tue Nov 3 16:23:37 2009). A simplified road
map of part of Romania.

▶ goal: getting from a given city to a destination one (possibly,
through the shortest route)

▶ states: being in each possible city
▶ actions: moving between two adjacent cities
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Goal and problem formulation: examples

Chess

▶ goal: to checkmate (this goal is achieved in many possible
chessboard configurations, i.e., there are many goal states)

▶ states: each legal chessboard configuration
▶ actions: all legal moves
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Properties of search problems

▶ Static vs dynamic: does the environment change over time?
Examples: 15-puzzle and chess are static; robot navigation is
dynamic, if the position of obstacles changes over time

▶ Fully vs partially observable: is the current state completely
known? Examples: 15-puzzle and chess are fully observable; robot
navigation is partially observable, if sensors are not “perfect”

▶ Discrete vs continuous sets of states and actions. Examples:
15-puzzle and chess are discrete, robot navigation is continuous

▶ Deterministic vs non-deterministic: is the outcome (the resulting
state) of any sequence of actions certain. i.e., known in advance?
Examples: 15-puzzle is deterministic, chess is not (due to the
opponent’s move, that is unknown when deciding one’s own)
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Examples of real-world search problems

Many challenging real-world problems can be formulated as search
problems. Some examples:
▶ traveling salesperson problem: finding the shortest tour

that allows one to visit every city of a given map exactly
once (applications to planning, logistics, microchip
manufacture, DNA sequencing, etc.)

▶ route-finding: routing in computer networks, airline travel
planning, etc.

▶ VLSI design: cell layout, channel routing
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Search problems: formal defintion

How to devise algorithms, and how to implement them using some
programming language, to solve search problems?

First, a rigorous problem definition is needed.

The goal and problem formulation sketched above can be formally
defined in terms of four components:
▶ the initial state
▶ the set of possible actions
▶ the goal test
▶ the path cost
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Search problems: formal defintion

▶ Initial state: a description of the state where the search starts
▶ Actions: a description of all possible actions available at any

possible state. They can be defined as a successor function SF
which, given a state s, returns the set of ordered pairs (a′, s ′),
where a′ is a legal action in state s and s ′ the resulting state

– the initial state and SF implicitly define the state space: a
graph whose nodes correspond to states and edges to actions

– a path in the state space is a sequence of states connected by
a sequence of actions

▶ Goal test: a function that determines whether or not any given
state is a goal state

▶ Path cost function: it assigns a numeric cost to each path. In
many problems it equals the sum of the costs of the individual
actions (step cost) along the path
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Example: 8-puzzle
A simpler version of the 15-puzzle problem.
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Figure 3.4 FILES: figures/8puzzle.eps (Tue Nov 3 16:22:11 2009). A typical instance of the 8-
puzzle.

▶ States: all possible board configurations (i.e., the location of each
tile in the board)

▶ Initial state: any given board configuration (note that only half of
the configurations can be reached by any given one)

▶ Goal test: checking whether the input state matches the desired
one

▶ Path cost: if the goal is to reach the desired configuration by the
shortest sequence of moves, each action “costs” 1 move, and the
path cost is the number of steps (moves) in the path
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Example: 8-puzzle

▶ Actions: different descriptions are possible, e.g.:
– moving the n-th tile (n ∈ {1, . . . , 8}) to one of the empty

adjacent cells, if any (e.g., “move tile 3 right”)
– moving the blank to one of the adjacent cells (e.g., “move the

blank down”)
Using the latter description, the input/output behaviour of SF can
be represented as in the following example:

SF (
7 2 4

5 6

8 3 1 ) = {(“move the blank down”,
7 2 4

5 3 6

8 1 ), . . .}

The resulting state space is a graph made up of 9!
2 nodes (possible board

configurations reachable from any initial state).

Note that in this problem it is not convenient nor necessary to compute
and store the state space beforehand into computer memory: it is
implicitly defined by the initial state and SF .
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Example: route finding in maps
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Figure 3.2 FILES: figures/romania-distances.eps (Tue Nov 3 16:23:37 2009). A simplified road
map of part of Romania.
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Example: route finding in maps

▶ States: the set of cities in the map
▶ Initial state: any given city in the map
▶ Goal test: checking whether an input city is the destination one
▶ Actions: moving from any given city to an adjacent one.

Accordingly, SF returns all the cities adjacent to a given one (no
further action description is necessary for this problem), e.g.:
SF (Arad) = {(Timisoara, Sibiu, Zerind)}

▶ Path cost: if the goal is to find the shortest route to the
destination, the cost of each action is the length (e.g., in km) of the
route between the corresponding cities, and the path cost is the sum
of the lengths of all routes in the path

Note that in this kind of problem the state space corresponds to the
map. Accordingly, storing in computer memory the information on the
map amounts to explicitly storing the whole state space.
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Solving a search problem

From now on we shall consider the simplest kind of search
problem: static, fully observable, discrete, deterministic
(e.g., 8/15-puzzle and route finding in maps).

Key feature of this kind of problem: the search for a solution can
be made offline, i.e., before starting the execution of the
corresponding actions.

The main steps for solving such problems are therefore:
1. goal and problem formulation (discussed above)
2. searching for a solution (offline)
3. executing the actions

In the following we shall focus on the search step.
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Search algorithms

A possible approach for solving a search problem: systematically
“exploring” all the possible sequences of actions (i.e., all the paths
in the state space) from the initial state, in a suitable order, until a
goal state is reached.

This can be achieved by iteratively constructing the corresponding
action sequences, by expanding at each iteration one of the
current sequences, i.e., adding to it every possible single action.

During this process, the current set of action sequences can be
conveniently represented by a tree graph, named search tree.

The criterion used for choosing which action sequence to expand
at teach iteration defines what is called a search strategy.
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Search tree

A search tree represents a set of action sequences (partial
solutions) starting from the initial state:
▶ each node represents a state
▶ an edge represents the action that leads from the parent

node’s state to the child node’s state
▶ a leaf node corresponds to the end state of an action

sequence
▶ each sequence of nodes from the root to a leaf is called path,

and represents one of the action sequences encoded in the
search tree

▶ the depth of a node is the number of actions in the path from
the root to that node (the root node has zero depth)

▶ the set of leaf nodes is called fringe or frontier
Note that a state can appear in different nodes of a search tree.
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Search tree: an example
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Figure 3.2 FILES: figures/romania-distances.eps (Tue Nov 3 16:23:37 2009). A simplified road
map of part of Romania.

▶ Root node: the starting city, Arad
▶ Six leaf nodes (fringe, in white): six partial solutions

– Arad → Sibiu → Arad
– Arad → Sibiu → Fagaras
– . . .

▶ Edges: moving from a city to an adjacent one
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State space and search tree
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Figure 3.2 FILES: figures/romania-distances.eps (Tue Nov 3 16:23:37 2009). A simplified road
map of part of Romania.

Note that a search tree is different from the state space.

One key difference is that every node corresponds to a single state
of the state space, but every state may appear in several nodes of
the search tree (i.e., in different paths).
In the example above, this is the case of the state ‘Arad’.



28

Sketch of a general tree-search algorithm

1. construct the root node R of the search tree, associate the initial
state to R, and set the fringe equal to {R} (the initial state is the
only partial solution at this point)

2. repeat:
2.1 if the fringe is empty, then no solution has been found and the

algorithm stops
2.2 choose one of the partial solutions, i.e., one leaf node N from

the fringe (in the first iteration only R can be selected)
2.3 if N contains a goal state, then the search is successfully

completed: the algorithm stops, returning the sequence of
actions in the path from R to N as the solution

2.4 expand the state in N:
2.4.1 apply SF to the state in N
2.4.2 for each state generated by SF , construct a new leaf node,

add it to the tree as a child of N, and add it to the fringe
2.4.3 remove N from the fringe
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Sketch of a general tree-search algorithm

Note that the above tree-search algorithm is independent of the
search problem.

The key point is the choice of a leaf node to expand in step 2.2:
▶ different criteria can be used for this choice
▶ each criterion defines a specific search strategy
▶ each search strategy leads to a different search algorithm

It turns out that different search strategies can have very different
performance, in terms of:
▶ effectiveness: the capability of finding a “good” solution
▶ efficiency: the amont of computing resources required to find

a solution (processing time and memory requirements)
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Tree-search algorithm: an example

Getting from Arad to Bucharest (route finding on maps)
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map of part of Romania.
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Tree-search algorithm: an example

Step 1: the root node is constructed, coresponding to the initial
state (Arad).
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Tree-search algorithm: an example

Step 2: the first iteration starts.

Step 2.1: the fringe is not empty

Step 2.2: the fringe contains a single leaf node, the root node
(Arad), which is therefore selected

Step 2.3 (goal test): Arad is not the desired state

Step 2.4: the chosen leaf (the root node) has to be expanded
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Tree-search algorithm: an example

Step 2.4.1: the successor function is applied to the state Arad,
which generates all the states reachable from Arad

Step 2.4.2: the newely generated states are added as child nodes to
the root node, and to the fringe

Step 2.4.3: the expanded node is removed from the fringe

Leaf nodes, not yet expanded (the fringe), are shown in white; non-leaf
nodes, already expanded (no more in the fringe) are shaded.
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Tree-search algorithm: an example

Step 2: a new iteration starts.

Step 2.1: the fringe is not empty

Step 2.2: the fringe contains three leaf nodes: which one to
choose? This is decided by a search strategy (see later).
For now, assume that Sibiu is chosen.

Step 2.3 (goal test): Sibiu is not the desired state

Step 2.4: the chosen leaf (Sibiu) has to be expanded
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Tree-search algorithm: an example

Step 2.4.1: the successor function is applied to the state Sibiu,
which generates all the states reachable from Sibiu (including
Arad)

Step 2.4.2: the newely generated states are added as child nodes to
the expanded node, and to the fringe

Step 2.4.3: the expanded node is removed from the fringe

Then a new iteration starts . . .
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Tree-search algorithm: an example
Note that the current search tree contains six action sequences (or
partial solutions), corresponding to the paths from the root to each of
the six leaf nodes:

1. Arad → Sibiu → Arad

2. Arad → Sibiu → Fagaras

3. Arad → Sibiu → Oradea

4. Arad → Sibiu → Rimnicu Vilcea

5. Arad → Timisoara

6. Arad → Zerind
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General tree-search algorithm

A more concise (but still informal) description:

function Tree-Search (problem, strategy)
returns a solution, or failure

construct the root node using the initial state of problem
loop do

if there are no leaf nodes
then return failure

choose a leaf node according to strategy
if the chosen leaf node contains a goal state

then return the corresponding solution
expand the chosen leaf node
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Implementation hints

In the following, a more formal version of the above tree-search
algorithm is presented as a pseudo-code, together with the
corresponding data structures.

Note that this version is independent of the search problem, and
of the programming language.

Details may change depending on the specific programming
language used for implementing the algorithm.
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Data structure: nodes of the search tree

The example below depicts the information that needs to be stored
in computer memory to represent a node of the search tree:
▶ the state associated to the node
▶ the parent node (a reference, or pointer), useful to recon-

struct the path from the root when a goal state is found
▶ the action that lead to this node from the parent one
▶ the path cost from the root node to this one

Additional information may be useful, e.g., the node depth.

21
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Figure 3.10 FILES: figures/state-vs-node.eps (Tue Nov 3 13:50:06 2009). Nodes are the data
structures from which the search tree is constructed. Each has a parent, a state, and various bookkeeping
fields. Arrows point from child to parent.
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Data structures: nodes of the search tree

The information outlined above can be conveniently stored into a record
data structure, like the C language’s struct, a dictionary in Python, or
into instance variables of a class in object–oriented languages, including
the following fields:

State a problem-dependent representation
of the corresponding state

Parent-Node a reference or pointer to the parent node
Action a description of the action that lead

from the parent node to this one
Path-Cost the total cost of the actions on the path

from the root to this node
Depth the number of actions in the path

from the root to this node
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Data structures: fringe of the search tree

At each step of the tree-search algorithm one of the leaf nodes (i.e., an
element of the fringe) must be selected for expansion. The choice among
all the leaf nodes is made according to a given search strategy, as
discussed later.

The leaf nodes must therefore be quickly accessible. To this aim,
references or pointers to leaf nodes should also be stored into a linear
data structure, like a linked list in C or a list or set in Python.

A convenient solution is to store pointers to each node in the fringe in a
queue, a first-in first-out (FIFO) data structure.

Newly generated nodes are therefore inserted into the queue in the order
in which they will be expanded by the chosen search strategy. This way,
the next node to be expanded is always the first node in the current
fringe.
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Data structures: the search problem

Information specific to the search problem at hand can be stored, e.g.,
into a record data structure:

Initial-State a problem-dependent representation of the
initial state

Goal-Test a function that checks whether a given state
is a goal state

Successor-Fn the function SF (see above) that returns
a set of pairs (action, state) from a given state

Step-Cost a function that returns the cost
of carrying out a given action from a given state

For instance, in C language the values of the Goal-Test,
Successor-Fn and Step-Cost fields can be pointers to functions,
whereas in Python they can be references to functions (i.e., function
names).
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Implementation of the tree-search algorithm

A possible implemementation of the tree-search algorithm is
shown in the next slide.

Note that this implementation is problem-independent, and is an
example of modular programming style:
▶ it can be used for any search problem
▶ all the problem-specific details (e.g., the data structure

representing a state and the goal-test function) are
represented or implemented separately

Function and field names are written in Small Capitals.
The notation Field-Name[record] denotes the value of the field
Field-Name of a record.
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Implementation of the tree-search algorithm

function Tree-Search (problem, Enqueue)
returns a solution, or failure

fringe ← an empty queue
fringe ← Enqueue(Make-Node(Initial-State[problem]),

fringe)
loop do

if Empty?(fringe) then return failure
node ← Remove-First(fringe)
if Goal-Test[problem](State[node]) succeeds
then return Solution(node)
fringe ← Enqueue(Expand(node, problem), fringe)

The search strategy is assumed to be defined through the function
Enqueue, which is passed to Tree-Search as an argument (e.g., a
pointer to a function in C language). As explained above, Enqueue
inserts the newly generated nodes in a queue, in the order in which they
have to be expanded according to the corresponding search strategy.
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Implementing auxiliary functions: node expansion

This function expands a node, connects its children (leaf) nodes to it,
and returns them:

function Expand(node, problem) returns a set of nodes
successors ← the empty set
for each ⟨action, result⟩ in

Successor-Fn[problem](State[node]) do
n ← Make-Node(result)
Parent-Node[n] ← node
Action[n] ← action
Path-Cost[n] ← Path-Cost[node] +

Step-Cost[problem](node, action)
Depth[n] ← Depth[node] + 1
add n to successors

return successors
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Other auxiliary functions

▶ Make-Node(s) returns a new instance of the node data structure,
storing the state s in its State field, with no parent, no action,
zero depth and zero path-cost

▶ Remove-First(q) removes the first element from the queue q and
returns it

▶ Solution(n) returns the sequence of actions (the values of the
Action fields) from the root of the tree to node n, following the
pointers in the Parent-Node fields from n backwards to the root

▶ Enqueue(nodes, q) inserts in the queue q each node in the set
nodes, in a position defined by the search strategy.
Accordingly, a different implementation of Enqueue must be
defined for each search strategy
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A note on the representation of the state space

For some search problems the state space can be very large.
For instance, the state space of the 8-puzzle game has size 9!/2.
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Figure 3.4 FILES: figures/8puzzle.eps (Tue Nov 3 16:22:11 2009). A typical instance of the 8-
puzzle.

Fortunately, it is not necessary to store the whole state space in
memory (e.g., represented as a graph): each state can indeed be
obtained from the initial one through the successor function SF
(remember that the tree-search algorithm iteratively constructs
partial solutions as sequence of actions from the initial state).

In other words, as already pointed out previously, the initial state
and SF implicitly define the state space.
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A note on the representation of the state space

As a particular case, in problems like route finding in maps,
defining the SF and the step cost function amounts to explicitly
store the whole state space, i.e., the graph structure which
corresponds to the map:

– the set of cities
– what pairs of cities are

directly connected
– the cost of moving between

any two adjacent cities
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map of part of Romania.
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Measuring problem-solving performance

The performance of a tree-search algorithm can be evaluated according
to two main criteria:
▶ effectiveness: how “good” is the solution found (if any)?

– completeness: is the algorithm guaranteed to find a
solution, when there is one?

– optimality: when a solution is found, is its path cost minimal?
▶ efficiency: what is the processing cost of finding a solution (if

any)? Formally, this property is called computational complexity:
– time complexity: how long does it take to find a solution?
– space complexity: how much memory is needed?

Often a trade-off between effectiveness and efficiency is required.
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Search strategies

Search algorithms differ only in the criterion to choose one of the
partial solutions to follow up at each step. An example:
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Figure 3.2 FILES: figures/romania-distances.eps (Tue Nov 3 16:23:37 2009). A simplified road
map of part of Romania.

current search tree:

which of the six partial solutions
should one choose?

Two kinds of strategies exist, depending on the available
information about which choice is “better” than another:
▶ no information: uninformed search strategies must be used
▶ some information: informed search strategies can be used
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Uninformed search strategies

Rationale: in absence of any information about the “best” partial
solution, systematically explore the space state.

Main strategies:
▶ breadth-first
▶ depth-first
▶ uniform-cost
▶ depth-limited
▶ iterative-deepening depth-first
▶ bidirectional
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Breadth-first search (BFS)

BFS expands first the shallowest leaf node. If there is more than one
leaf node at the lowest depth, one of them is randomly chosen.

This amounts to expand first all nodes at depth 0 (the root), then all
nodes at depth 1, then all nodes at depth 2, and so on.

An example:
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Figure 3.2 FILES: figures/romania-distances.eps (Tue Nov 3 16:23:37 2009). A simplified road
map of part of Romania.

shallowest leaf nodes:
Timisoara, Zerind;
one of them is randomly chosen
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Example of breadth-first search (1/6)

Route finding on maps: getting from Arad to Bucharest.
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The nodes of the search tree will be numbered to to avoid ambigu-
ities, since different nodes can be associated with the same state.
The search steps are numbered according to the general
tree-search algorithm shown above.
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Example of breadth-first search (2/6)

1. root node: the initial state, Arad; fringe = { Arad }
2.1 the fringe is not empty
2.2 the shallowest node in the fringe (the root) is chosen (Arad)
2.3 Arad is not a goal state

Arad

Arad

SibiuZerind Timisoara
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2 3 4
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2 3 4

1

5 6 7 8 9 10 11 12
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Example of breadth-first search (3/6)

2.4 Arad is removed from the fringe and expanded, generating
three nodes having identical depth
▶ the newly generated nodes must be inserted in the fringe (a

queue) in the order in which they will be expanded by BFS; by
definition, in BFS a newly expanded node has depth equal or
higher than all the other nodes in the fringe; therefore, the
newly expanded nodes are inserted at the end of the fringe

▶ since the newly generated nodes always have identical depth,
they are inserted in the fringe in any order between themselvesArad
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Current fringe: { Zerind (2), Sibiu (3), Timisoara (4) }.



56

Example of breadth-first search (4/6)

2.1 the fringe is not empty
2.2 the first node in the fringe is selected (it is guaranteed to be
one of the shallowest leaf nodes)
2.3 the corresponding state, Zerind, is not the desired state
2.4 Zerind is removed from the fringe and expanded, generating
two nodes that are inserted at the end of the fringe
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Current fringe: { Sibiu (3), Timisoara (4), Oradea (5), Arad (6) }.
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Example of breadth-first search (5/6)

2.1 the fringe is not empty
2.2 the first node in the fringe is selected
2.3 the corresponding state, Sibiu, is not the desired state
2.4 Sibiu is removed from the fringe and expanded, generating four
nodes that are inserted at the end of the fringe
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1
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Current fringe: { Timisoara (4), Oradea (5), Arad (6), Oradea (7),
Arad (8), Rimnicu Vilcea (9), Fagaras (10) }.
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Example of breadth-first search (6/6)

2.1 the fringe is not empty
2.2 the first node in the fringe is selected
2.3 the corresponding state, Timisoara, is not the desired state
2.4 Timisoara is removed from the fringe and expanded, generating
two nodes that are inserted at the end of the fringe

Arad

Arad

SibiuZerind Timisoara

Arad

SibiuZerind Timisoara

AradOradea

Arad

SibiuZerind Timisoara
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1
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5 6 7 8 9 10

2 3 4

1
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Current fringe: { Oradea (5), Arad (6), Oradea (7), Arad (8),
Rimnicu Vilcea (9), Fagaras (10), Lugoj (11), Arad (12) }.

And so on.
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Exercise

Apply the BFS algorithm to the 8-puzzle problem, considering the
initial and goal states below, and expanding the first four nodes
of the search tree (i.e., execute the first four iterations of the
general tree-search algorithm).
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Figure 3.4 FILES: figures/8puzzle.eps (Tue Nov 3 16:22:11 2009). A typical instance of the 8-
puzzle.
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Properties of breadth-first search

In terms of effectiveness, it can be easily shown that BFS is:
▶ complete: a solution is always found, if one exists
▶ non-optimal: it is not guaranteed that the solution with

minimum path cost is found (if any), unless the path cost is a
non-decreasing function of depth

Computational complexity can be evaluated as follows.
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Computational complexity of algorithms

The execution time of a given algorithm depends on several factors not
intrinsic to the algorithm itself: its implementation in a specific language,
the hardware on which the program is executed, etc.

Time complexity is therefore evaluated not in terms of the execution
time, but in terms of the number of “elementary operations” carried out
by the algorithm, assuming that each of them can be executed in
constant time.

Depending on the algorithm, “elementary operations” can be additions,
multiplications, comparisons, iterations, etc.

The first step is therefore to identify what the “elementary operations” of
a given algorithm are. For instance:
▶ sorting algorithms (selection sort, quick sort, etc.): comparison

between a pair of values
▶ computing the digits of the representation of a number in a given

basis: computing the quotient and remainder of a division
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Computational complexity of algorithms

The number of elementary operations carried out by an algorithm
depends either on the value or the size of its input, e.g.:
▶ to sort a sequence of numbers, the number of comparisons

depends on the size of the sequence
▶ to computing the digits of the representation of a number in a

given basis, the number of divisions depends on its value

Even if the number of elementary operations depends on more
than one factor, for the sake of simplicity a single factor is
considered and the others are kept constant.
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Computational complexity of algorithms: an example

Consider the well-known selection sort algorithm, that sorts a
sequence of values in increasing or decreasing order.

It can be described as follows:
1. find the minimum value in the sequence
2. swap it with the value in the first position
3. repeat the above steps for the remainder of the sequence,

starting at the second position, then at the third one, up to
the penultimate position
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Computational complexity of algorithms: an example

A possible implementation of selection sort in C language, for sorting in
non-decreasing order an array of integers:

void selection_sort (int a[], int length) {
int i, j, ind_min, tmp;
for (i = 0; i < length - 1; i++) {

ind_min = i;
for (j = i + 1; j < length; j++)

if (a[j] < a[ind_min]) ind_min = j;
if (ind_min != i) {

tmp = a[i]; a[i] = a[ind_min]; a[ind_min] = tmp;
}

}
}
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Computational complexity of algorithms: an example

Time complexity of selection sort can be evaluated as follows:
▶ each comparison in the nested loop can be considered as the

elementary operation
▶ for a sequence of length n, the outer loop is repeated for n−1 times
▶ at iteration k (k = 1, . . . , n − 1), n − k comparisons are made to

find the lowest element, starting from the k-th position, then a
swap is possibly made.

The exact number of comparisons is therefore given by:

(n − 1) + (n − 2) + . . . + 2 + 1 = n(n − 1)
2

Time complexity depends therefore on the size of the input, i.e., the
sequence length n. Therefore, all problem instances of a given size
(sequences of a given length) have the same time complexity.
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Computational complexity of algorithms

Let n denote the value of the factor which the number of elementary
operations carried out by an algorithm depends on (e.g., the length of a
sequence to be sorted, or the value of a number to be represented in a
given basis), and f (n) the corresponding number of of elementary
operations.

For some algorithms evaluating f (n) can be difficult, especially if it
depends on the problem instance, i.e., on the input value.

Time complexity is thus evaluated only for some particular cases, usually:
▶ worst-case complexity, corresponding to the instances that require

the highest number of elementary operations
▶ average-case complexity: average number of elementary operations

over all possible problem istances
▶ best-case complexity, corresponding to the instances that require

the lowest number of elementary operations
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Computational complexity of algorithms

To evaluate and compare algorithms it useful to consider their
asymptotic time complexity, i.e., the behaviour of f (n) as n→∞.

To this aim an upper bound g(n) of f (n) is determined using
asymptotic analysis, known as “big O notation”.

A function f (n) is said to be O(g(n)) (“order g”), if there exists
some n0 > 0 and c > 0 such that f (n) ≤ c × g(n) for each n ≥ n0.
Of course, the tightest upper bound g(n) is of interest.

For instance, it is easy to see that any polynomial of degree p,
apnp + ap−1np−1 + . . . + a1p + a0, is O(np).

As an example, this implies that the time complexity of selection
sort, given by n(n−1)

2 , is O(n2).
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Computational complexity of algorithms

Well-known categories of (increasing) asymptotic complexity are
the following:
▶ O(1): constant time algorithms: their execution time is

identical for all problem instances
▶ O(logn): logarithmic time

(e.g., binary search in sorted sequences)
▶ O(n): linear time (e.g., sequential search)
▶ O(np), for a given integer p: polynomial time

(e.g., selection sort, with p = 2)
▶ O(kn), for a given k > 1: exponential time

(e.g., the simplex algorithm in linear programming)
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Computational complexity of search algorithms

Getting back to the general tree-search algorithm:
▶ elementary operation: generation of a new node during the

expansion of a leaf node (step 2.4)
▶ data to be stored in memory: nodes of the search tree (a constant

amount of memory for each node can be assumed)

Computational complexity can therefore be evaluated as follows:
▶ worst-case time complexity: the highest number of nodes that are

generated before a solution is found (if any)
▶ worst-case space complexity: the highest number of nodes that

have to be simultaneously stored in memory
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Breadth-first search: computational complexity

In the specific case of BFS, it is not difficult to see that computational
complexity depends on two main factors:
▶ the number of successors of each node of the search tree
▶ the depth d of the shallowest solution, which is the one found by

BFS

Since different nodes can have a different number of successors (see, e.g.,
8-puzzle and route finding on maps), to simplify the evaluation of
computational complexity, a constant number of successors b, named
branching factor, is considered.

For instance, for b = 2 we have a binary tree:
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Figure 3.12 FILES: figures/bfs-progress.eps (Tue Nov 3 16:22:26 2009). Breadth-first search on
a simple binary tree. At each stage, the node to be expanded next is indicated by a marker.
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Breadth-first search: computational complexity
For a fixed branching factor, computational complexity can be evaluated
as a function of d only.

Time complexity: in the worst case the goal state is in the last node
that is selected in step 2.2 to be expanded, among all the ones at depth
d . This means that all the other nodes at depth d are expanded before.

The number of generated nodes can be computed by evaluating the
number of nodes that are generated at each depth:

Depth Number of generated nodes
0 1 (root node)
1 b
2 b2

3 b3

. . . . . .
d bd

d + 1 bd+1 − b
Total: 1 + b + b2 + b3 + . . . + bd + (bd+1 − b)
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Breadth-first search: computational complexity

To evaluate space complexity it suffices to notice that all generated
nodes must remain in memory until a solution is found. It follows that
space complexity equals time complexity.

The worst case time and space complexity of BFS, for a search tree with
a given branching factor b and shallowest solution at depth d , are
therefore given by:

1 + b + b2 + b3 + . . . + bd + (bd+1 − b) .

It easily follows that the asymptotic complexity of BFS is O(bd+1), i.e., it
is exponential with respect to the depth of the shallowest solution.

In general, an exponential computational complexity denotes a very low
efficiency.
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Breadth-first search: computational complexity

As an example of what an exponential complexity means, consider a
search problem with the following features:
▶ branching factor b = 10
▶ time for generating one node: 10−4 s
▶ storage required for a single node: 1, 000 bytes

Worst-case time and space complexity of BFS, as a function of the depth
d of the shallowest solution:

Depth Nodes Time Memory
2 1, 100 0.11 sec. 1 megabyte
4 111, 100 11 sec. 106 megabytes
6 107 0.19 minutes 10 gigabytes
8 109 31 hours 1 terabyte

10 1011 129 days 101 terabytes
12 1013 35 years 10 petabytes
14 1015 3, 523 years 1 exabyte
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Properties of breadth-first search

To sum up, BFS exhibits the following properties:
▶ it is complete: a solution is always found, if one exists
▶ it is non-optimal: it is not guaranteed that the solution with

minimum path cost is found (if any), unless the path cost is a
non-decreasing function of depth

▶ it has an exponential time and space complexity with
respect to the depth of the shallowest solution
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Depth-first search (DFS)

Contrary to BFS, DFS expands first the deepest leaf node (in case there
are several such nodes, a random choice is made).

This amounts to explore first one whole path; if no solution is found,
another whole path is explored, and so on.

An example:
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Figure 3.2 FILES: figures/romania-distances.eps (Tue Nov 3 16:23:37 2009). A simplified road
map of part of Romania.

deepest leaf nodes: Arad, Fagaras,
Oradea, Rimnicu Vilcea;
one of them is randomly chosen
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Example of depth-first search (1/5)

Route finding on maps: getting from Arad to Bucharest.
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map of part of Romania.
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Example of depth-first search (2/5)

1. root node: the initial state, Arad; fringe = { Arad }
2.1 the fringe is not empty
2.2 the deepest node in the fringe (the root) is chosen (Arad)
2.3 Arad is not a goal state

Arad

Arad

SibiuZerind Timisoara

Arad

SibiuZerind Timisoara

AradOradea

1

2 3 4

1
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1
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Sibiu Zerind 87
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Example of depth-first search (3/5)

2.4 Arad is removed from the fringe and expanded, generating
three nodes having identical depth
▶ the newly generated nodes must be inserted in the fringe (a

queue) in the order in which they will be expanded by DFS; by
definition, in DFS a newly expanded node has depth equal or
higher than all the other nodes in the fringe; therefore, the
newly expanded nodes are inserted at the top of the fringe

▶ since the newly generated nodes always have identical depth,
they are inserted in the fringe in any order between themselvesArad

Arad

SibiuZerind Timisoara

Arad

SibiuZerind Timisoara

AradOradea

1

2 3 4

1

2 3 4

1
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Current fringe: { Zerind (2), Sibiu (3), Timisoara (4) }.
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Example of depth-first search (4/5)

2.1 the fringe is not empty
2.2 the first node in the fringe is selected (it is guaranteed to be
one of the deepest leaf nodes)
2.3 the corresponding state, Zerind, is not the desired state
2.4 Zerind is removed from the fringe and expanded, generating
two nodes that are inserted at the top of the fringe

Arad
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SibiuZerind Timisoara
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AradOradea

1
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1
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Current fringe: { Oradea (5), Arad (6), Sibiu (3), Timisoara (4) }.



80

Example of depth-first search (5/5)

2.1 the fringe is not empty
2.2 the first node in the fringe is selected
2.3 the corresponding state, Oradea, is not the desired state
2.4 Oradea is removed from the fringe and expanded, generating
two nodes that are inserted at the top of the fringe

Arad
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SibiuZerind Timisoara

Arad

SibiuZerind Timisoara

AradOradea

1

2 3 4

1

2 3 4

1

5 6
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2 3 4

1

5 6
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Oradea

Current fringe:
{ Sibiu (7), Zerind (8), Arad (6), Sibiu (3), Timisoara (4) }.

And so on.
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Exercise

Apply the DFS algorithm to the 8-puzzle problem, considering the
initial and goal states below, and expanding the first four nodes
of the search tree (i.e., execute the first four iterations of the
general tree-search algorithm).
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Figure 3.4 FILES: figures/8puzzle.eps (Tue Nov 3 16:22:11 2009). A typical instance of the 8-
puzzle.
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Some remarks on depth-first search

A drawback of DFS is that it can get stuck going down along very long
paths. Infinite paths can also occur, due for instance to loops like: Arad
→ Zerind → Arad → Zerind . . . (loops can be easily avoided – see later).

On the other hand, DFS has modest memory requirements:
▶ if all the paths starting from a given node have been fully explored

(if they are not infinite) and no solution has been found, the sub-tree
having such a node as the root can be removed from memory

▶ it follows that only a single path form the root to a leaf node needs
to be stored in memory during the search, together with the
unexpanded sibling nodes for each node on that path
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Example of depth-first search
An example for a binary search tree, assuming that each path has
maximum depth 3, and that node M contains a goal state. Shaded nodes
are the ones not yet generated. Among several nodes at the same depth,
the left-most one is chosen for expansion in this example.
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Figure 3.16 FILES: figures/dfs-progress-noblack.eps (Tue Nov 3 13:30:55 2009). Depth-first
search on a binary tree. The unexplored region is shown in light gray. Explored nodes with no descen-
dants in the frontier are removed from memory. Nodes at depth 3 have no successors andM is the only
goal node.
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Depth-first search: computational complexity

Computational complexity of DFS can be evaluated by assuming that:
▶ all nodes have the same number of successors b (branching factor)
▶ all solutions have the same depth m
▶ m is also the maximum depth of the search tree (worst case),

assuming loops are avoided

Moreover, in the worst case the goal state is in the last path that is
explored by DFS.

To compute time complexity, note that the above assumptions imply
that all nodes up to depth m are generated before the solution is found.

To compute space complexity, remember that only a single path from
the root to a leaf node, along with the remaining unexpanded sibling
nodes for each node in the path, must be stored (see the example above).
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Depth-first search: computational complexity

Under the above assumptions, the computational complexity of DFS as a
function of the solution depth m is given by:

Time complexity Space complexity
Depth N. of generated nodes N. of stored nodes
0 1 (root node) 1 (root node)
1 b b
2 b2 b
. . . . . . . . .
m bm b
Total: 1 + b + . . . + bm = O(bm) 1 + mb = O(m)

Time complexity is therefore exponential with respect to the solution
depth m, as that of BFS, but space complexity is linear.
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Properties of depth-first search

DFS exhibits the following properties:
▶ it is complete, unless there are infinite paths
▶ it is non-optimal: a deeper, suboptimal solution can be found

along a path that is explored before another one containing
the optimal solution at smaller depth

▶ it has an exponential time complexity with respect to the
solution depth, but only a linear space complexity
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Other strategies
▶ Uniform-cost: expands the leaf node with the lowest path cost (it

is both optimal and complete)
▶ Depth-limited: depth-first search with a predefined depth limit

(avoids infinite paths, but is not complete)
▶ Iterative-deepening depth-first: repeated depth-limited search

with depth limit 1, 2, 3, . . ., until a solution is found (it avoids
infinite paths, and is complete)

▶ Bidirectional: simultaneously
searching forward from the
initial state and backwards from
the goal state, with alternate
node expansions, until the two
searches meet, i.e., a common
state is found in their frontiers
(requires reversible actions)

26 Chapter 3. Solving Problems by Searching

GoalStart

Figure 3.20 FILES: figures/bidirectional.eps (Tue Nov 3 16:22:27 2009). A schematic view of a
bidirectional search that is about to succeed when a branch from the start node meets a branch from the
goal node.



88

Avoiding repeated states

Search algorithms may waste time by expanding different nodes
associated with the same state. This may happen, e.g., when:

▶ actions are reversible, which
allows loops like:
Arad → Zerind → Arad →
Zerind . . .

▶ different paths can lead to
the same state, e.g.:
Arad → Sibiu, and Arad →
Zerind → Oradea → Sibiu

▶ cyclical paths exist (loops
are a particular case), e.g.:
Arad → Zerind → Oradea →
Sibiu → Arad
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Figure 3.2 FILES: figures/romania-distances.eps (Tue Nov 3 16:23:37 2009). A simplified road
map of part of Romania.
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Avoiding repeated states

Four main solutions of increasing complexity can be adopted.
When a node n is being expanded:

1. if reversible actions exist, discard the newly generated node
containing the same state of the parent node of n (this
avoids loops)

2. discard all children nodes containing states already present in
the same path from the root to n (this avoids cyclical paths)

3. discard all children nodes containing states already present in
the current search tree (ineffective for DFS, which does not
store all generates nodes)

4. discard all children nodes containing states previously
generated, even if not present in the current search tree
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Avoiding repeated states

The above solutions require to compare every newly generated node with
some other nodes, which can affect computational complexity:
▶ solution 1 requires a single comparison
▶ solution 2 requires a number of comparisons equal to the depth of

the parent node n
▶ solution 3 requires a comparison with all the nodes in the current

search tree: its time complexity is exponential for strategies with
exponential space complexity (like BFS)

▶ solution 4 requires to store the states of all previously generated
nodes (this can significantly increase the space complexity of DFS)

A careful implementation of strategies 3 and 4 would remove the repeated
state with the highest path cost, to avoid ruling out the optimal solution.
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Effectiveness of uninformed search: an example

One may think that the high computational complexity of
uninformed search strategies is an issue only for real-world
problems, not for toy ones.

Consider again 8-puzzle, apparently a very simple toy problem:
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Figure 3.4 FILES: figures/8puzzle.eps (Tue Nov 3 16:22:11 2009). A typical instance of the 8-
puzzle.

How long does it take to solve it using, e.g., BFS?
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Effectiveness of uninformed search: an example

Some facts about 8-puzzle:
▶ the state space contains 9! = 362, 880 distinct states (only

9!/2 = 181, 440 are reachable from any given initial state)
▶ it can be shown that the average solution depth (over all possible

pairs of initial and goal states) is about 22
▶ the average branching factor b (over all possible states) is about 3

(note that from each state 2 to 4 actions can be performed)

How many nodes does BFS generate and store, when the shallowest
solution has depth d = 22 (i.e., in the average case)?
Remember that the worst-case time and space complexity of BFS is
O(bd+1), which for d = 22 amounts to 323 ≈ 9× 1010...
For instance, taking into account that representing a state requires at
least ⌈log2 9!⌉ = 19 bits, storing 323 states requires about 19× 9× 1010

bits, i.e., more than 200 GB...
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Exercise

1. Implement the general tree-search algorithm, and the
related data structures, in a programming language of your
choice

2. Implement the additional, specific functions for breadth-first,
depth-first and uniform-cost search

3. Implement the additional, specific data structures and
functions for the 8-puzzle problem, and the route finding
problem in the Romania map

4. Run the above search algorithms on specific problem
instances, and evaluate the number of generated nodes and
the maximum number of nodes simultaneously stored in
memory
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Informed search

Uninformed search is based on systematically exploring the search
space, and does not exploit any information (if any) about what
nodes are more “promising” than others towards the solution.

When some knowledge is available, it can be exploited to improve
the effectiveness and the efficiency of tree search.

The main idea is to use the available problem-specific knowledge
to identify the “best” node to expand at each step of the general
tree-search algorithm, instead of using uninformed criteria like
expanding the shallowest or deepest node.

This general approach is named best-first search.
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Best-first search

Best-first search is based on quantitatively evaluating how
“promising” a given node n is towards a solution, through a
suitable node evaluation function f (n) (conventionally, lower
values of f correspond to “better” nodes).

Different definitions of f (n) lead to different, specific best-first
search strategies, for instance:
▶ greedy search
▶ A*-search and its many variants (iterative-deepening A*,

memory-bounded A*, etc.)
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Best-first search

Once a suitable f (n) (i.e., a specific best-first search strategy) has
been defined, the corresponding search algorithm can be
implemented using the same general tree-search algorithm
presented above.

Best-first search can be easily implemented by sorting nodes in the
fringe for increasing values of f (n): this allows the node n with the
lowest f (n) (the “best” node) to be selected for expansion at each
iteration.
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Best-first search

To define f (n), a very useful information is the cost of the actions that
will lead from any given node n to a goal state.

Although in non-trivial problems the exact cost is usually unknown, often
an estimate can be easily computed.

The estimated cost as a function of the nodes is formalized as a function
h(n). Note that, by definition, h(n) = 0 if n contains a goal state (this is
the only case in which the cost is exactly known).

For historical reasons h(n) is named heuristic function, and search
strategies based on it are named heuristic search.

Heuristic search is one of the early achievements of AI (dating back to
the 1950’s), but is still widely used in real-world problems and
investigated by researchers in AI.
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Heuristic functions: an example

Consider the problem of route finding in maps, e.g., finding the shortest
route form Arad to Bucharest using the information on the map below:
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Figure 3.2 FILES: figures/romania-distances.eps (Tue Nov 3 16:23:37 2009). A simplified road
map of part of Romania.

Since the goal is to find the shortest route, the cost of the actions is
evaluated as the route length (e.g., in Km). Defining an heuristic
function for this problem amounts therefore to estimating the distance
between any given city and the destination (in the problem instance
above, Bucharest).
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Heuristic functions: an example

An easy to compute estimate for this kind of problem is the
straight-line distance (e.g., it can be easily computed from the
geographical coordinates of each city).

If the destination (goal state) is Bucharest, the heuristic function
h(n) can therefore be defined as the straight-line distance from the
city (state) of node n to Bucharest.

The values of h(n), considering
Bucharest as the destination,
are shown on the right
(they will be used later on).
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Greedy best-first search

This is the simplest best-first search strategy: expanding the node
that appears to be the closest to the solution.

Since usually the exact cost is unknown, this strategy is implemen-
ted using the estimated cost, i.e., the heuristic function h(n).

Accordingly, the node evaluation function is simply defined as:

f (n) = h(n)

This strategy is called “greedy” since it favours the partial solution
that appears to be the closest to the goal state (since h(n) is only
an estimate), but, as it will become more clear later, this is not an
optimal choice.
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Greedy best-first search: an example

Consider again the problem of finding the shortest route from Arad
to Bucharest, using the straight-line distance heuristic.

In the following, the search tree built by the greedy search strategy,
until a solution is found, is shown, including the value of f (n) for
each node. The node selected for expansion is highlighted by an
arrow.

Remember that using the general tree-search algorithm a
solution is found when a node containing a goal state is selected to
be expanded, not when it is generated by the expansion of its
parent node.
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Greedy best-first search: an example

14 Chapter 3. Solving Problems by Searching

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Drobeta

Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

Figure 3.2 FILES: figures/romania-distances.eps (Tue Nov 3 16:23:37 2009). A simplified road
map of part of Romania.
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with their h-values.
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Greedy best-first search: an example
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Figure 3.2 FILES: figures/romania-distances.eps (Tue Nov 3 16:23:37 2009). A simplified road
map of part of Romania.
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Greedy best-first search: an example
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Figure 3.2 FILES: figures/romania-distances.eps (Tue Nov 3 16:23:37 2009). A simplified road
map of part of Romania.

27

Urziceni

Neamt
Oradea

Zerind

Timisoara

Mehadia

Sibiu

Pitesti
Rimnicu Vilcea

Vaslui

Bucharest

Giurgiu
Hirsova

Eforie

Arad

Lugoj

Drobeta
Craiova

Fagaras

Iasi

 0
160
242
161

77
151

366

244
226

176

241

253
329
80

199

380
234

374

100
193

Figure 3.22 FILES: figures/romania-sld.eps (Tue Nov 3 16:23:37 2009). Values of hSLD—
straight-line distances to Bucharest.

28 Chapter 3. Solving Problems by Searching

Rimnicu Vilcea

Zerind

Arad

Sibiu

Arad Fagaras Oradea

Timisoara

Sibiu Bucharest

329 374

366 380 193

253 0

Rimnicu Vilcea

Arad

Sibiu

Arad Fagaras Oradea

Timisoara

329

Zerind

374

366 176 380 193

Zerind

Arad

Sibiu Timisoara

253 329 374

Arad

366

(a) The initial state

(b) After expanding Arad

(c) After expanding Sibiu

(d) After expanding Fagaras

Figure 3.23 FILES: figures/greedy-progress.eps (Tue Nov 3 16:22:55 2009). Stages in a greedy
best-first tree search for Bucharest with the straight-line distance heuristic hSLD . Nodes are labeled
with their h-values.



105

Greedy best-first search: an example
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Properties of greedy best-first search

It can be shown that greedy best-first search exhibits the following
properties:
▶ it is complete, unless there are infinite paths (including trivial

loops)
▶ it is non-optimal: for instance, carefully looking at the above

example it can be seen that a shorter route between Arad and
Bucharest exists (through Sibiu and Rimnicu Vilcea), than the
one found by greedy search

▶ worst-case time and space complexity is exponential in the
depth of the shallowest solution m, for a given branching
factor b: O(bm)
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A* search

A* is the most relevant best-first search strategy. It was devised in
the 1960s for robot navigation tasks.

Many variants of A* have been proposed since then to tune the
trade-off between its effectiveness and efficiency.
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A* search

Greedy search chooses for expansion the node n which appears
closest to the goal state, i.e., such that the estimated cost of the
actions from n to a goal state is minimum. However, it disregards
the cost of the actions from the root to n.

A* uses instead an estimate of the total cost of the action
sequence from the root to a goal state through n, defined as the
sum of the path cost of n (which is exactly known) and the
estimated cost from n to the solution.

The corresponding node evaluation function is defined as:

f (n) = g(n)︸ ︷︷ ︸
path cost from root to n

+ h(n)︸︷︷︸
estimated cost from n to the solution
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A* search: an example

In the following the search tree built by A* is shown for the same problem
of the previous example (Arad-Bucharest, using the straight-line distance
heuristic). The value of f (n) = g(n) + h(n) is also shown for each node.

Note that after the fourth iteration (the expansion of the node containing
the state Fagaras) a leaf node containing the goal state Bucharest is
generated. However, it is not selected for expansion at the next iteration
(and thus a solution is not found yet), since it is not the node with the
minimum value of f (n).

During the expansion of the node containing the state Pitesti in the fifth
iteration, a different node containing the goal state Bucharest is
generated. This latter node is selected for expansion at the next
iteration, since it has the minimum value of f (n), and since it contains a
goal state, a solution is found and A* terminates.
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A* search: an example
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Figure 3.2 FILES: figures/romania-distances.eps (Tue Nov 3 16:23:37 2009). A simplified road
map of part of Romania.
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A* search: an example
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Properties of A* search

It can be shown that A* search exhibits the following properties:
▶ it is optimal (the proof is given in the following), provided that the

heuristic is admissible, i.e., never overestimates the cost to the
solution (e.g., the straight-line distance is an admissible heuristic for
route finding in maps)

▶ it is complete, and is also optimally efficient (i.e., it expands the
minimum number of nodes) for any admissible heuristic, among
algorithms that extend search paths from the root

▶ worst-case time and space complexity are exponential in the
depth of the shallowest solution m, for a given branching factor b:
O(bm); nevertheless, A* is often much more efficient (i.e., it
generates a much smaller number of nodes) than other uninformed
and informed search strategies
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Proof of A* optimality
Assume the fringe contains one leaf node n′ with a suboptimal goal state,
and no leaf node with an optimal goal state.

Can A* ever select n′ to be expanded, thus returning it as a suboptimal
solution?

First, note that some leaf node n′′ ̸= n in the path toward an optimal
solution must exist in the fringe.

We have to consider therefore the following scenario:

root node

fringe

n' n''

optimal solution
(not yet generated)

suboptimal
solution

...
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Proof of A* optimality

Denoting with C∗ the cost of an optimal solution, the above
assumptions imply:

1. h(n′) = 0 (n′ contains a goal state)

2. f (n′) = g(n′) + h(n′) = g(n′) > C∗

(n′ contains a sub-optimal goal state)

3. f (n′′) = g(n′′) + h(n′′) ≤ C∗ (n′′ is in the path toward an
optimal solution, and h is admissible, thus f (n′′) does not
overestimate the cost of any solution reachable through n′′)

In turn, expressions 2 and 3 imply:

f (n′) > C∗ ≥ f (n′′)

This means that n′ cannot be selected for expansion, and thus A*
cannot return a suboptimal solution.
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Improving A* search

▶ “Good” heuristics (discussed later) can reduce time and
memory requirements, especially with respect to uninformed
search

▶ However, in many practical problems even A* is infeasible:
memory requirements are the main drawback. Alternative
approaches have been devised:

– using non-optimal A* variants that find suboptimal solutions
quickly

– using A* variants with reduced memory requirements and a
small increase in execution time, but still optimal
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Defining heuristic functions

Intuitively, the more accurate is the estimate of the cost to the
solution from a given node provided by the heuristic function, the
more efficient a best-first algorithm is.

Defining a good (i.e., accurate) heuristic is therefore crucial for
informed search. Moreover, heuristics have to be admissible to
guarantee the optimality of A*.
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Defining heuristic functions: examples

We have seen that a possible heuristic for route finding in maps is the
straight-line distance.

Consider now the 8-puzzle problem. Remember that about 9× 1010

nodes are generated on average by breadth-first (uninformed) search
when the solution is at the average depth of 22: therefore a good
heuristic can be of great practical help also in this toy problem.

16 Chapter 3. Solving Problems by Searching
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Figure 3.4 FILES: figures/8puzzle.eps (Tue Nov 3 16:22:11 2009). A typical instance of the 8-
puzzle.As an exercise, try to devise admissible heuristic functions for the

8-puzzle problem.
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Defining heuristic functions

Well-known admissible heuristics for k-puzzle are the following:
▶ number of misplaced tiles (in the following, h1(n))
▶ sum of the “distances” of each tile from its goal position (city

block or Manhattan distance, h2(n))
For instance, the value of h1 and h2 for the start state below on
the left, with respect to the goal state on the right, is given by:
▶ h1(start state): 8 (all 8 tiles are misplaced)
▶ h2(start state): 3 + 1 + 2 + 2 + 2 + 3 + 3 + 2 = 18 (tiles 1 to 8)
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Defining or choosing heuristic functions

For some problems it may be not straightforward to define a heuristic
function. In that case a general approach is to set h(n) equal to the
exact cost of a relaxed version of the problem at hand, which may be
easy to compute.

Some examples:
▶ k-puzzle: by relaxing the constraint that tiles can move only to a

free adjacent square, and allowing them to move to any adjacent
square, one obtains h2(n) (see above)

▶ k-puzzle: similarly, allowing tiles to move to any square (even
non-adjacent and occupied ones), one obtains h1(n)

▶ route finding in maps: by relaxing the constraint that an adjacent
city can be reached only through the corresponding route, and
allowing one to move straight to it, one obtains the straight-line
distance heuristic
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Defining or choosing heuristic functions

On the other hand, for some problems it can be possible to define several
admissible heuristics h1, . . . , hp (e.g., h1 and h2 for 8-puzzle).

In this case one can choose or define a single heuristic h which
dominates all the other ones, i.e.:

for each node n, h(n) ≥ hi(n), i = 1, . . . , p.

It is easy to see that such a heuristic is admissible, and provides a more
accurate estimate of the cost to the solution than h1, . . . , hp.

To this aim, h can be defined as follows:
▶ if there is a dominating heuristic among h1, . . . , hp, choose it as the

heuristic for the problem at hand
▶ otherwise, for a given node n use the following heuristic:

h(n) = max{h1(n), . . . , hp(n)},

which dominates by definition h1, . . . , hp
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Evaluating heuristic functions

To evaluate the quality of heuristic functions the concept of
effective branching factor (denoted as b∗) is used:
▶ let N be the number of nodes generated by A* for a given

problem, and d be the depth of the (optimal) solution
▶ b∗ is defined as the branching factor of a uniform tree of

depth d containing N nodes, which is the solution of the
equation:

N = 1 + b∗ + (b∗)2 + · · ·+ (b∗)d

The lower the value of b∗, the better the heuristic.

Since b∗ depends on the problem instance, it is usually evaluated
empirically as the average over a set of instances.
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Evaluating heuristic functions
As an example, the table below reports the results of an empirical
evaluation of the effective branching factor of heuristics h1 and h2 for the
8-puzzle (used in A*), and, for comparison, of one of the most efficient
uninformed search strategies, iterative-deepening depth-first search (IDS).

The comparison is made on 600 randomly generated problem instances
with solution depth d = 4, 8, . . . , 24 (100 instances for each depth value).
The symbol – means that IDS could not terminate due to memory
overflow. It is clear that h2 is significantly better than h1, and that
uninformed search is unfeasible even for 8-puzzle.

search cost (expanded nodes) effective branching factor
d IDS A* (h1) A* (h2) IDS A* (h1) A* (h2)
4 112 13 12 2.87 1.48 1.45
8 6,384 39 25 2.80 1.33 1.24

12 3,644,035 227 73 2.78 1.42 1.24
16 – 1,301 211 – 1.45 1.25
20 – 7,276 676 – 1.47 1.27
24 – 39,135 1,641 – 1.48 1.26
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