
1

Artificial Intelligence
academic year 2024/2025

Giorgio Fumera, Ambra Demontis

Pattern Recognition and Applications Lab
Department of Electrical and Electronic Engineering

University of Cagliari (Italy)

http://pralab.diee.unica.it/en
http://pralab.diee.unica.it/en

2

Introduction to machine learning

Artificial Neural Networks

3

Artificial Neural Networks: historical notes

▶ Inspired by findings in neuroanatomy and neurophysiology
(19th – early 20th cent.) Bear F. M., Connors W. B., Paradiso
A. M. Neuroscience. Exploring the brain.
▶ Different regions of the brain control different functionalities
▶ The neuron is the fundamental unit that constitutes the brain

▶ 1943: McCulloch and Pitts’ model of neurons as “logic units”
▶ 1949: Hebb’s model of changes in “synaptic strength” and cell

assemblies as the origin of adaptation, learning and “thinking”
▶ 1957: Rosenblatts’ perceptron:

– “training procedures” for adjusting connection weights
– applications to pattern recognition: “error correction” training

procedure (perceptron learning algorithm)

4

Artificial Neural Networks: historical notes

▶ 1970s: limits of perceptrons are pointed out (low
expressiveness, lack of mathematical rigor), causing a drop of
interest in neural networks (M.L. Minsky and S.A. Papert,
Perceptrons, MIT Press, 1969)

▶ Mid–1980s: “renaissance” of neural networks, or the
connectionist approach

– an efficient learning algorithm: back-propagation
– theoretical support from statistics and computational

learning theory
– seminal works:

o D.E. Rumelhart, J.L. McClelland (Eds.), Parallel Distributed
Processing, MIT Press, 1986

o D.E. Rumelhart, G.E. Hinton, R.J. Williams, Learning
representations by back-propagating errors, Nature 323,
533-536, 1986

5

Artificial Neural Networks: historical notes

Since the 1990s:
▶ different kinds of ANNs:

– Feed-Forward Multi-Layer networks
– Radial Basis networks
– recurrent networks: Hopfield networks, associative memories
– Boltzmann machines

▶ applications in several fields: computer vision, pattern
recognition, control systems, etc.

▶ main current trend: deep neural networks, and in particular
convolutional networks, originally devised for image
processing

▶ Outstanding performance thanks to:
– Large datasets
– Powerful GPUs

6

Brains and neurons: some facts

Basic elements: nerve cells
called neurons

Axon

Cell body or Soma

Nucleus

Dendrite

Synapses

Axonal arborization

Axon from another cell

Synapse

▶ 1011 neurons, 1015 connections between them
▶ apparently simple neuron behavior: “firing” (up to 103 Hz) in

response to specific patterns of input signals, modulated by
excitatory and inhibitory connections

▶ massive parallelism
▶ robustness to “noise”
▶ learning capability in response to external stimuli: novel connections

between neurons, changing connection “strength”

7

McCulloch and Pitts’ model of neurons

First mathematical model of neuron’s
behaviour: the “logic unit” model by
McCulloch and Pitts (1943)

y

x1

x2

xd

...

x0 = -1

w1

w2

wd
w0

▶ input signals: x1, . . . , xd ∈ {0, 1}, plus a fictitious input x0 = −1
▶ connection weights w0, . . . , wd ∈ R: their values and signs model

the excitatory or inhibitory effect
▶ perceptron input: weighted sum of its input signals:

a(x, w) =
∑d

i=0 wixi ,

where x = (x1, . . . , xd), x0 = −1, w = (w0, . . . , wd)
▶ output signal y ∈ {0, 1}, called activation: y = g(a), where g is

called activation function

8

McCulloch and Pitts’ model of neurons

The activation function is defined as the Heaviside (step)
function, or threshold function:

g(a) =
{

1, if a ≥ 0
0, if a < 0

In words, the neuron “fires” (it outputs a 1), if the weighted sum
of its input signals exceeds a threshold given by the bias weight,
i.e., if

∑d
i=1 wixi ≥ w0, otherwise it does not “fire” (it outputs a 0).

9

McCulloch and Pitts’ model of neurons
For instance, McCulloch and Pitts’ model with d = 2 inputs x1
and x2 can behave as an AND or OR logic gate:
▶ AND: one can set, e.g., w1 = w2 = 1, and w0 = 1.5: this way

the activation w1x1 + w2x2 − w0 is non-negative (thus y = 1),
only when x1 = x2 = 1 (see the figure below on the left)

▶ OR: w1 and w2 can still be set to 1, whereas w0 can be set,
e.g., to 0.5: (see the figure below on the right)

Note however that there are infinite combinations of values of the
connection weights producing the same results (e.g., w1 = 3,
w2 = 2 and w0 = 4 for the AND logic gate).

y

x1

x2

+1

+1

+1.5

-1

y

x1

x2

+1

+1

+0.5

-1

10

The idea of artificial neural networks

Neurons in human and animal brains are organised in complex structures.
The job of some structures is to perceive or recognise “patterns” in
sensory inputs (e.g., enabling sight from signals coming from cells in the
retina), and to “learn” to recognise novel patterns by changing their
connections or connection strength.

McCulloch and Pitts’ model inspired the idea of building hardware or
software structures, named artificial neural networks, emulating some
aspects of brain organisation and workings, in particular the capability of
“learning” to perform a recognition task by modifying their structure or
parameters based on the analysis of examples of the desired
input-output behaviour.

McCulloch and Pitts’ model of real neurons turned out to be
oversimplified, but it proved to be useful as a basic building block for
artificial neural networks in AI. More accurate models are still being
developed by neuroscientists, but their complexity is too high for AI
applications.

11

The perceptron

One of the first attempts of defining an artificial neuron capable of
performing pattern recognition tasks was the perceptron by
Frank Rosenblatt (1957), inspired by McCulloch and Pitts’ model
of neuron.

y

x1

x2

xd

...

x0 = -1

w1

w2

wd
w0

The only difference from McCulloch and Pitts’ model is that the
inputs can be real numbers, instead of the binary values {0, 1}.

Since the perceptron’s output can take only two values (0 and 1),
it can be used to recognise two different classes of input values.

12

The perceptron

For instance, a perceptron could be used for image recognition tasks
involving two classes, e.g., in OCR, to discriminate between images of
“zeros” and of “ones”.

Considering gray-level images of size
8× 8 pixels, with 8 bits per pixel (i.e.,
256 grey levels in {0, . . . , 255}), the
values of the 64 pixels can be used as
the perceptron’s inputs x1, . . . , x64.

...

...

...

x1
x2

x8...

x57
x58

x64...

w1
w2

w8

w57
w58
w64

–1
w0

y

After choosing the desired values of the perceptron output (e.g., y = 1
when the input image represents a “one”, and y = 0 otherwise), one
should find suitable values of the connection weights w0, w1, . . . , w64
capable of producing the corresponding input–output behaviour.

13

The perceptron

An alternative choice for the input values is to use a set of measures
(attributes or features) computed from the input image, which are
deemed to be discriminant between the classes of interest.
As a simple example, one can consider that
“zeros” are likely to be made up of a larger
number of pixels and to be wider than “ones”,
as in the figures on the right.

Machine Learning, Part 1, March 2017 Fabio Roli © 7

Writing a deterministic algorithm to recognize numbers
from images is very difficult…

But we can collect easily many example images…

Machine Learning, Part 1, March 2017 Fabio Roli © 7

Writing a deterministic algorithm to recognize numbers
from images is very difficult…

But we can collect easily many example images…

Accordingly, one may use:
▶ x1: the fraction of foreground pixels, i.e., the number of pixels

whose value exceeds a given binarisation threshold, divided by the
total number of pixels, 64

▶ x2: the relative character “width”, i.e., the number of image
columns that contain at least one foreground pixel divided by the
total number of columns, 8

14

The perceptron

The computation of x1 and x2 can be represented by a feature
extraction module acting on the input image:

...

...

...

–1
w0

y
w2

w1x1

x2

15

The perceptron as a learning machine

As mentioned above, experience and learning produce changes
(among other things) on the connection strength between
neurons in the human brain.

Can the perceptron emulate this behaviour?

In other words, can the connection weights of a perceptron be
modified by a learning algorithm to perform a recognition
(supervised classification) task involving two categories of inputs,
based on a training set of labelled examples, whose attributes
correspond to the perceptron’s inputs?

16

The perceptron learning algorithm

A learning algorithm for the perceptron was devised by
F. Rosenblatt in 1960.

Its goal is to find the connection weights that minimise the
number of misclassifications on a given training set T , possibly
achieving zero errors, i.e., consistency with T .

Basically, the perceptron learning algorithm starts by randomly
setting the connection weights, then it iterates several times over
the training examples, and whenever an example is found to be
misclassified by the current perceptron, the connection weights
are updated in an attempt to correctly classify it, until some
stopping criterion is met.

17

The decision regions of a perceptron

To better understand how the perceptron learning algorithm works,
it is useful to look at the kind of decision regions produced by a
perceptron in attribute (input) space, for fixed values of the
connection weights.

To this aim, remember that the perceptron activation function is
defined as:

y =
{

1, if
∑d

i=0 wixi ≥ 0
0, if

∑d
i=0 wixi < 0

Where x0 = -1.

This corresponds to a linear discriminant function in attribute
space, i.e., a hyperplane whose equation is

∑d
i=0 wixi = 0.

18

The decision regions of a perceptron

As an example, consider a classification problem with two attri-
butes (d = 2) with values in [0, 1], and a perceptron with connec-
tion weights w1 = 1, w2 = 2, w0 = 2, whose output is defined by:

y =
{

1, if x1 + 2x2 − 2 ≥ 0
0, if x1 + 2x2 − 2 < 0

The corresponding decision regions
are shown in the figure on the right,
where the small arrow points toward
the region where the perceptron
output equals 1. x1

x2

1

1

x1 + 2x2 – 2 = 0

0.5

O

y = 1

y = 0

19

The decision regions of a perceptron

For instance, consider the two possible features mentioned above for a
two-class handwritten digit recognition task, “0” vs “1”: fraction of
foreground pixels (x1) and relative character “width” (x2).
The figure below is an example of a training set made up of five instances
(images) from each class (◦ = “1”, • = “0”), plotted in the feature
space, and the decision regions produced by a perceptron with random
weight values.

Assuming that the desired perceptron
output is 1 for the class “1” and 0 for
the class “0”, this perceptron
misclassifies three instances of class
“1” and four instances of class “0”.

x1

x2

1

1

O

y = 1

y = 0

20

The decision regions of a perceptron

Since the boundary of the decision regions implemented by a perceptron
is the hyperplane h defined by w1x1 + w2x2 + . . . + wdxd − w0 = 0, for
any given point x = (x1, . . . , xd) in the feature space the absolute value
of the the input, |a(x, w)| = |w1x1 + w2x2 + . . . + wdxd − w0|, is
proportional to the distance of x to h.

The figure on the right shows
the same plot of the previous
example, with the distance of
each training instance to the
decision boundary highlighted.

x1

x2

1

1

O

y = 1

y = 0

21

The error function of the perceptron learning algorithm

The weight update rule of the perceptron learning algorithm is
based on the idea of defining an error function that evaluates the
extent to which a misclassified training example is “far” from being
correctly classified.

The error function is defined in such a way that it is positive and
proportional to the distance in feature space of a misclassified
example x to the perceptron’s decision boundary: the underlying
intuition is that the larger the distance, the larger the amount by
which the connection weights have to be modified to get x
correctly classified.

22

The error function of the perceptron learning algorithm

The error function, for a given misclassified example x and for given
values of the connection weights w = w0, . . . , wd , is defined as:

E (x, w) = −t × a(x, w) = −t × (w1x1 + w2x2 + . . . + wdxd − w0) ,

where t = +1 if the desired perceptron output for x is 1, and t = −1 if
the desired output is 0.

It is easy to see that, if x is misclassified, then E (x, w) > 0:
▶ if t = +1 and x is misclassified, then the input a(x, w) is negative,

and therefore E (x, w) = −t × a(x, w) > 0
▶ if t = −1 and x is misclassified, then the input a(x, w) is positive,

and therefore E (x, w) = −t × a(x, w) > 0

23

The error function of the perceptron learning algorithm

To reduce the error function for a misclassified example, the gradient
descent approach is used:

wi ← wi − η
∂E (x, w)

∂wi
, i = 0, . . . , d ,

where η is an arbitrary, positive constant, usually called learning rate.

From the definition of the error function, it is easy to see that its partial
derivatives with respect to the connection weights are given by:

∂E (x, w)
∂wi

=
{
−t × xi , i = 1, . . . , d
t, i = 0

The weight update rule is therefore:

wi ← wi + ηxi t, i = 1, . . . , d
w0 ← w0 − ηt

24

Pseudo-code of the perceptron learning algorithm

Note that the above weight update rule “moves” the perceptron decision
boundary in feature space toward correctly classifying a previously
misclassified example x, but does not guarantee that x gets correctly
classified after a single weight update.

The figure on the right shows an
example of how the decision
boundary may change after the
weight update corresponding to
the misclassified example
highlighted in red:

x1

x2

1

1

O

y = 1

y = 0

after

weight update

before

weight update

For the above reason, the perceptron learning algorithm repeatedly
iterates over the whole training set T , updating the connection weights
for each misclassified example.

25

Pseudo-code of the perceptron learning algorithm

function Perceptron-Learning (T)
returns weight values w

randomly choose the initial weight values w
repeat

for each (x, t) ∈ T do
if E (x; w) > 0
then wi ← wi − ∂E(x;w)

∂wi
, i = 0, . . . , d

end for
until a stopping condition is satisfied
return w

Each for loop over training examples is named epoch.

26

The perceptron learning algorithm: convergence

If the examples of the two classes in the training set are linearly
separable, then the perceptron learning algorithm always
converges to a consistent solution after a finite number of
epochs, for any η > 0 (F. Rosenblatt, 1960).

An example of a possible solution
provided by the perceptron learning
algorithm for linearly separable
classes:

x1

x2

1

1

O

y = 1

y = 0

Since convergence is guaranteed (for linearly separable classes) for
any η > 0, usually η = 1 is chosen.

27

The perceptron learning algorithm: convergence

If T is not linearly separable, the perceptron learning algorithm
proceeds toward a solution “close” to the minimum possible
number of misclassified examples (without guaranteeing the actual
minimum), but does not converge to a fixed solution: in this case
the number of misclassified examples tends to remain constant or
to slightly “oscillate” around a given value.

An example of a possible solution
provided by the perceptron learning
algorithm for a non-linearly
separable training set:

x1

x2

1

1

O

y = 1

y = 0

28

The perceptron learning algorithm: convergence

In practice, it is not possible to determine in advance whether a
given T is linearly separable, especially if the number of attributes
and of training examples is very high.

Accordingly, as the stopping condition of the perceptron learning
algorithm, one can consider setting a maximum number of epochs
or detecting that the number of misclassified examples remains
almost constant for a certain number of consecutive epochs.

29

Limitations of the perceptron
We have seen that a perceptron can represent Boolean functions
such as AND and OR.

However, it cannot represent a Boolean function like XOR. This can
be graphically proven as shown below, taking into account that no
line can separate points (1, 0) and (0, 1), where the perceptron
output should equal 1, from points (0, 0) and (1, 1), where the
perceptron output should equal 0:

x1

x2

1

1

O

?

30

Limitations of the perceptron

In the 1970’s the perceptron was found to have a too limited
expressive capability for many real-world classification tasks, whose
class distribution in attribute space can be highly non-linear: in
this case the linear class boundary implemented by a perceptron
cannot guarantee an acceptably small misclassification rate.

A toy-example for two classes with a
“XOR-like” distribution in attribute
space: it is not difficult to see that
any linear boundary will misclassify
at least one fourth of the training
examples (e.g., all the examples in
one of the four clusters): x1

x2

O

31

Perceptron networks

Neurons in the human brain are organized into complex and highly
interconnected networks, which enables them to produce very complex
“input-output” behaviors.
To mimic them, artificial neural networks (ANN) made up of intercon-
nected perceptrons (possibly with recurrent connections) may be used: it
is not difficult to see that they can represent non-linear discriminant
functions in attribute space.
An example: a perceptron
network with two inputs, one
output, several “internal” or
hidden units (i.e., units whose
output is an input signal of other
perceptrons), and some recurrent
connections (bias inputs are not
shown, for the sake of simplicity).

x
1

x
2

y

inputs

output unit

hidden units

32

Perceptron networks: an example

To create a deep neural network that correctly classify the training
examples shown at page 29 one can first reason about the decision
function it should have.

33

Perceptron networks: an example

To create a deep neural network
that correctly classify the training
examples shown at page 29 one can
first reason about the decision
function it should have.

Then, they can reason about the
architecture that can create that
decision function.

x
1

x
2

1

1

u
2
: x

1
+x

2
 ≥ 0.5

u
1
: x

1
+x

2
 ≤ 1.5

0.5

1.5

34

Perceptron networks: an example

To create a deep neural network
that correctly classify the training
examples shown at page 29 one can
first reason about the decision
function it should have.

This decision function can be
created with the following network
architecture:

x
1

x
2

1

1

u
2
: x

1
+x

2
 ≥ 0.5

u
1
: x

1
+x

2
 ≤ 1.5

0.5

1.5

u3 y3

x1

x2

-1

u1

u2

y1

-1

-1

y2

35

Perceptron networks: an example

Finally, one can set the weight
values of each unit such that they
implement the linear discriminant
functions shown on the right.

This perceptron network can
represent the XOR Boolean function.

x
1

x
2

1

1

u
2
: x

1
+x

2
 ≥ 0.5

u
1
: x

1
+x

2
 ≤ 1.5

0.5

1.5

u3 y3

x1

x2

-1

u1

u2

-1

+1

-1

+1

-1.5

+0.5

+1

+1

+1.5

-1

-1

y1

y2

36

Perceptron networks: an example

A similar solution can be adopted to build a two-class classifier
using a perceptron network for XOR-like class distributions:

x1

x2

O

37

Issues of perceptron networks

Despite perceptron networks have a higher expressive capability
than single perceptrons, it is not possible to adopt the perceptron
learning algorithm to set the connection weights of their units.

Indeed, the error function of the perceptron learning algorithm
requires the definition of the desired output for each training
example, represented by t ∈ {−1, +1}:

E (x, w) = −t × a(x, w)

The desired output can be
defined for the output units of
a network, but there is no way
to define it for hidden units:

u3
y3

x1

x2

-1

u1

u2

y1

-1

-1

y2

t3 = –1 or +1

t1 = ?

t2 = ?

38

Issues of perceptron networks

Alternative learning algorithms were devised in the 1970s, but they
exhibited a too high computational complexity.

Another issue is how to define a suitable network architecture,
i.e., the number of units and the connections between them, for a
given application. Can the architecture itself be chosen by the
learning algorithm, together with connection weights?

These difficulties contributed to a drop of interest in ANNs in the
1970s.

39

The renaissance of artificial neural networks

A practical solution to the above issues was found in the 1980s:
▶ devising learning algorithms capable of defining also the

network architecture is too difficult: it is better to use
predefined architectures

▶ efficient and effective learning algorithms were devised for:
– specific architectures, like feed-forward networks
– continuous activation functions, instead of the Heaviside step

function: this allows to use the gradient descent-like
approach also for hidden units, without the need of defining a
desired output for them

40

Continuous activation functions

Two widely used, continuous activation functions, which can be seen as
approximations of the Heaviside function:
▶ logistic function (or “sigmoid”): g(a) = 1

1+e−a ∈ (0, 1)

▶ hyperbolic tangent: g(a) = tanh(a) = ea−e−a

ea+e−a ∈ (−1, 1)

41

The feed-forward multi-layer architecture

The most widely used architecture for supervised classification and
regression problems is the feed-forward multi-layer (FF-ML):
▶ units are arranged into layers

– input layer: input (e.g., attribute) values
– output layer
– one or more hidden layers

▶ no recurrent connections (hence the name “feed-forward”)
▶ units of every layer (hidden and output layers) receive inputs

only from units of the previous layer (hence the name
“multi-layer”)

Usually FF-ML networks are fully-connected: every input and
hidden unit sends its output to all units of the next layer.

42

The feed-forward multi-layer architecture

An example of fully-connected FF-ML network with two inputs
(x1 and x2), two hidden layers of three and four units each, and
one output unit:

x
1

x
2

y

layer 1
(input)

layer 4
(output)

layer 2
(hidden)

layer 3
(hidden)

43

FF-ML networks as supervised classifiers

When FF-ML networks are used as supervised classifiers, the number of
output units and their desired outputs are usually defined as follows:
▶ two-class problems: a single output unit whose desired output is

t ∈ {0, +1} (when the logistic activation function is used) or
t ∈ {−1, +1} (for the tanh activation function)

▶ multi-class problems (m > 2 classes): m output units u1, . . . , um,
whose target values for training examples of the k-th class are
tk = +1, and ti = 0 (or −1) for i ̸= k (one-hot encoding)

After training, the class label of any new instance x is defined as follows:
▶ two-class problems: label +1, if y(x) ≥ 0.5 (logistic function) or

y(x) ≥ 0 (tanh); label 0 (or −1) otherwise
▶ multi-class problems: the label k∗ corresponding to the highest

output value: k∗ = arg maxk=1,...,m yk(x)

44

Expressive capability of FF-ML networks

It has been shown that a FF-ML network with a sufficient number
of hidden units with logistic or tanh activation function, and output
units with linear activation function g(a) = a, can represent:
▶ any Boolean function, using one hidden layer
▶ any bounded and continuous function, with arbitrarily small

approximation error, using one hidden layer
▶ any bounded, discontinuous function, with arbitrarily small

approximation error, using two hidden layers
However, in the worst case an exponential number of hidden units
is required, with respect to the number of inputs.

45

Expressive capability of FF-ML networks
In practical classification and regression problems it is not possible
to determine beforehand the most suitable FF-ML architecture
(i.e., the number of hidden layers and of hidden units), since the
“target” function (i.e., the relationship between attribute values
and the class label for classification, or the function to approximate
for regression) is unknown, and only a finite set of examples is
available.

Therefore, an iterative trial-and-error design approach is usually
adopted, according to the Occam’s razor principle (simpler
hypotheses consistent with the observations are preferable to more
complex ones):
▶ start with a simple, “small” FF-ML network, e.g., one hidden

layer and a few hidden units
▶ if the (estimated) generalization capability is not satisfactory,

consider a slightly more complex architecture (e.g., increase
the number of hidden units, or add a hidden layer)

46

The back-propagation learning algorithm

An efficient learning algorithm was devised in the 1980s for FF
ANNs with continuous and derivable activation function, including
FF-ML ANNs: back-propagation.

Similarly to the perceptron learning algorithm, also the
back-propagation algorithm is based on:
▶ defining an error function (or loss function) to evaluate the

difference between the network output and the desired
(target) output, for each training example

▶ a gradient descent-like procedure to reduce the value of the
error function, starting by random initial weight values, by
updating the connection weights through repeated epochs
over the training set

47

Back-propagation: the error function

For regression problems, given a network with m output units (to
be used to represent a function of m values), denoting with
y = (y1, . . . , ym) the vector of its output values, the typical error
function for a training example with attribute vector x and desired
outputs t = (t1, . . . , tm) is the squared error:

E (y, t) = 1
2

m∑
k=1

(tk − yk)2

For classification problems the cross-entropy is preferable (for
reasons rooted in the statistical setting of supervised classification
problems):

E (y, t) =
{
−(t log y + (1− t) log(1− y)), for m = 2 classes
−
∑m

k=1 tk log yk , for m > 2 classes

48

Back-propagation: minimising the loss function

49

Back-propagation: minimising the loss function

Denoting the values of the connection weights by a vector w, the goal of
the back-propagation algorithm is to find the w∗ that minimises the error
function over the whole training set T :

w∗ = arg min
w

∑
(x,t)∈T

E (y, t) ,

where the network output y is a function of both x and w.
Similarly to the perceptron learning algorithm, this problem cannot be
solved analytically. A gradient descent-like approach is therefore used,
which consists of updating all the connection weights, after computing
the network output for each single training example (x, t):

w ← w − η
∂E (y, t)

∂w , for each w ∈ w

In the following, the back-propagation algorithm is described for a
network with a single output unit, for the sake of simplicity.

50

Back-propagation algorithm: the forward pass

Given the current connection weights, for a given training example (x, t)
it is first necessary to compute the network output y.

This step is known as forward propagation, since the outputs of the
units in the first hidden layer must be computed first, then the outputs
of the units of the second hidden layer and so on, until the output unit:

x1

xd

y... ...

forward propagation

...

51

Back-propagation algorithm: the forward pass

The computations of the forward propagation step for any single
unit is made up of two steps:

1. compute the unit’s input a (weighted sum of its input values)
2. compute the unit’s output y through the activation

function, y = g(a)
For a generic unit the above steps can be represented as follows:

–1

! 𝑤!𝑥!
!

𝑔 𝑎
𝑎 𝑦

𝑤"

𝑤#

...

𝑥#
𝑤$𝑥$

52

Back-propagation algorithm: the backward pass

Once the network output for a single training example has been
computed, the partial derivatives of the error function can be
computed starting from the connection weights of the output unit,
then proceeding backward with the ones of the last layer of
hidden units, and so on until the first layer of hidden units: hence
the name of back-propagation.

x1

xd

y... ...

 backward propagation

...

53

Back-propagation algorithm: partial derivatives
Consider first the output unit. The error function is computed on its
output, y , and can be written as a composition of functions:

E (y , t) = E (g(a), t) = E
(

g
(∑

k
wkxk

)
, t
)

The partial derivative for the weight of any input connection, wk , can
therefore be computed using the well known chain rule:

∂E
∂wk

= ∂E
∂y

∂y
∂a

∂a
∂wk

–1

! 𝑤!𝑥!
!

𝑔 𝑎
𝑎 𝑦

output unit
...

𝐸 = 𝐸 𝑦, 𝑡

𝝏𝑬
𝝏𝒘𝒌

𝜕𝐸
𝜕𝑦

𝜕𝑎
𝜕𝑤!

𝜕𝑦
𝜕𝑎

...

𝑥!
𝑤!

54

Back-propagation algorithm: partial derivatives

For instance, if E (y , t) is defined as the squared error, 1
2 (t − y)2, and

the logistic activation function is used, g(a) = (1 + e−a)−1, the first two
terms above can be easily computed as follows:

∂E
∂y = −(t − y)

∂y
∂a = dg(a)

da = e−a

(1 + e−a)2 = g(a)[1− g(a)] = y(1− y)

It is also easy to see that the third term is given by:

∂a
∂wk

= xk

55

Back-propagation algorithm: partial derivatives

Therefore, for the output unit one obtains:

∂E
∂wk

= −(t − y)y(1− y)xk

Note that all the above terms are known, after the forward
propagation step.

Accordingly, the weight updates of the input connections to the
output unit can be computed immediately.

56

Back-propagation algorithm: partial derivatives

Consider now any hidden unit of the ℓ-th layer, uℓ
j .

The error function depends on such a unit through its output yj ,
which in turn is the input of each unit uℓ+1

i of the next layer
(either a hidden or the output layer):

–1

! 𝑤!"𝑥!"
"

𝑔 𝑎!
𝑎! 𝑦!

𝑤#$...

–1

! 𝑤%𝑥%
%

𝑔 𝑎$
𝑎$ 𝑦$

hidden unit u!ℓ
...

𝐸 = 𝐸 𝑦, 𝑡

...

𝑥%
𝑤%

unit u#ℓ$%

...

𝑥!$ = 𝑦$
𝑤!$

...
...

...

layer ℓ layer ℓ + 1

...

...

57

Back-propagation algorithm: partial derivatives

The partial derivative for the weight of any input connection to the
hidden unit uℓ

j can be computed similarly to the output unit:

∂E
∂wk

= ∂E
∂yj

∂yj
∂aj

∂aj
∂wk

As shown above, the last two terms can be computed as follows:

∂yj
∂aj

= yj(1− yj)

∂aj
∂wk

= xk

58

Back-propagation algorithm: partial derivatives

The first term ∂E/∂yj can be computed taking into account that
E (y , t) depends on yj through the outputs of each unit uℓ+1

i of
the next layer, and therefore it can be rewritten by applying the
chain rule as follows:

∂E
∂yj

=
∑
uℓ+1

i

∂E
∂yi

∂yi
∂yj

The second term can in turn be computed using the chain rule:

∂yi
∂yj

= ∂yi
∂ai

∂ai
∂yj

= yi(1− yi)wij

59

Back-propagation algorithm: partial derivatives

One finally obtains that, for a hidden unit uℓ
j :

∂E
∂wk

=

∑
uℓ+1

i

∂E
∂yi

yi(1− yi)wij

 yj(1− yj)xk

▶ all the above terms except for ∂E/∂yi are known from the
forward pass

▶ the term ∂E/∂yi is known from the backward pass carried
out for all the units uℓ+1

i of the next layer

This shows that the computation of the partial derivatives ∂E/∂w
has to proceed backwards, layer by layer, starting from the units
of the output layer.

60

Back-propagation algorithm: backward pass

The figure below shows the different steps of the computation of
the partial derivative ∂E/∂wk .

–1

! 𝑤!"𝑥!"
"

𝑔 𝑎!
𝑎! 𝑦!

𝑤#$...

–1

! 𝑤%𝑥%
%

𝑔 𝑎$
𝑎$ 𝑦$

...

𝐸 = 𝐸 𝑦, 𝑡

...

𝑥%
𝑤%

...

𝑥!$ = 𝑦$
𝑤!$

...
...

...

layer ℓ layer ℓ + 1

...

...
𝝏𝑬
𝝏𝒘𝒌

𝜕𝑦$
𝜕𝑎$

𝜕𝑎$
𝜕𝑤%

𝜕𝐸
𝜕𝑦$

𝜕𝐸
𝜕𝑦!

𝜕𝑦!
𝜕𝑎!

𝜕𝑎!
𝜕𝑦$

hidden unit u!ℓ unit u#ℓ$%

61

Pseudo-code of the back-propagation learning algorithm

function Back-Propagation (T)
returns weight values w

randomly choose the initial weight values w
repeat

for each (x, t) ∈ T do
compute the network output y (forward-propagation)
compute the error function E (y, t)
weight update: w ← w − η ∂E(y,t)

∂w (back-propagation)
end for

until a stopping condition is satisfied
return w

62

Convergence of the back-propagation learning algorithm
The error functions used for the back-propagation learning algorithm
have many local minima: in this case, starting from random weight
values, the gradient descent-like approach does not guarantee to reach
the global minimum.

Usually the error function
decreases over the first epochs,
then reaches a plateau,
corresponding to a (local)
minimum of the error function.

epochs1 2 3 ...

training
error

The stopping condition can therefore be defined in terms of
▶ carrying out a predefined (sufficiently high) number of epochs, or
▶ detecting that the error function remains almost constant over a

certain number of consecutive epochs

The convergence speed depends also on the value of the constant η.
Typical values are in the range from η = 10−4 to η = 10.

63

Dealing with local minima of the error function

To mitigate the issue of local minima, a multi-start strategy can
be used: the back-propagation algorithm is run several times
starting from different random weights; then the weight values
which provide the minimum training error across the runs are
chosen.

64

Attribute normalisation

The back-propagation learning algorithm usually benefits from
normalised attribute values, e.g., linearly re-scaling each attribute into
the range [0, 1] (min-max scaling) or to zero mean and unit variance:
▶ min-max scaling:

x ′
i = xi − xi,min

xi,max − xi,min
, i = 1, . . . , d

where xi,min and xi,max are the minimum and maximum values of
the i-th attribute across training examples

▶ zero mean and unit variance:

x ′
i = xi − µi

σi
, i = 1, . . . , d

where µi and σi are the mean and standard deviation of the i-th
attribute evaluated on training examples

65

Dealing with over-fitting

ANNs can incur over-fitting, as all machine learning models, due
to several possible factors:
▶ model complexity, which can be roughly evaluated in terms

of the number of connection weights, that in turn depends
on the number of hidden layers and of hidden units

▶ number of training examples
▶ number of attributes

These factors are interlinked with each other, i.e., a relatively
high number of attributes with respect to the number of training
examples, and a relatively high number of connection weights
with respect to the number of training examples is more likely to
lead to over-fitting.

66

Dealing with over-fitting

In ANNs over-fitting can be dealt with in several ways.
▶ choosing the network architecture by trial-and-error:

– starting with a relatively simple architecture, e.g., one hidden
layer with “few” hidden units (depending on the number of
attributes and of training examples)

– evaluating increasingly complex architectures, until the
estimated generalisation capability is satisfactory

▶ regularisation: setting constraints on the network weights
through the addition of specific penalty terms to the error
function, to favour “simpler” decision boundaries (e.g.,
weight decay, to avoid too large weights in absolute value)

67

Dealing with over-fitting

Another strategy, which can be used together with the trial-and-error
approach for model choice, is to monitor the error function during the
training epochs, on a distinct set of labelled examples than the ones
used for training, named validation set.

Whereas the training error
usually decreases as the number
of epochs increases, the
validation error may start
increasing after some epochs: in
this case the resulting ANN is
likely to over-fit.

epochs1 2 3 ...

training error

validation error

To prevent or to mitigate over-fitting, the back-propagation algorithm
can be stopped when the validation error starts increasing, and the
weight values corresponding to the minimum validation error can be
used, instead of the ones leading to the minimum training error – this
technique is called early stopping.

68

Software libraries for Artificial neural networks

scikit-learn: an open source Python library for machine
learning, including FF-ML ANNs (and DTs):

https://scikit-learn.org

playground: a web application that visualises the decision regions
produced during the execution of the back-propagation algorithm
by FF-ML ANNs with up to 6 hidden layers and up to 8 hidden
units per layer, on four different two-class toy problems with two
real-valued inputs:

https://playground.tensorflow.org

https://scikit-learn.org
https://playground.tensorflow.org/#activation=sigmoid&batchSize=1&dataset=xor®Dataset=reg-plane&learningRate=0.01®ularizationRate=0&noise=0&networkShape=2&seed=0.23336&showTestData=false&discretize=true&percTrainData=70&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&hideText=false

69

Artificial neural networks vs Decision trees

ANNs and DTs are two examples of different machine learning
models.

They have different characteristics in terms of:
▶ “shape” of class boundaries in attribute space
▶ generalisation capability
▶ interpretability

70

Artificial neural networks vs Decision trees
“Shape” of class boundaries in attribute space:

As previously shown, DTs
produce axis-parallel splits of
the attribute space.

ANNs can produce more flexible
class boundaries, instead, depen-
ding on the number of hidden
layers and of hidden units.
The example on the right shows
the decision regions produced by
an ANN with two hidden layers
of eight units each, on a
two-class problem with two
attributes, with intertwined
spiral-shaped class distributions.

x1

x1 < t1

Ax2

BA

x1 ≥ t1

x2 < t2 x2 ≥ t2

A

A

B

O 1

1

t1

t2

x2

x1

taken from https://playground.tensorflow.org

https://playground.tensorflow.org

71

Artificial neural networks vs Decision trees

Generalization capability:
▶ ANNs are usually more robust than DTs to noise on attribute

values and on class labels, which may be due to imprecise
attribute measurements or to errors in manual labelling of
training examples

▶ ANNs (with a suitable architecture) often achieve a higher
generalisation capability than DTs

It is however well known that no machine learning model can
outperform all other models on all classification or regression
tasks: model selection should therefore be carefully carried out,
taking into account the characteristics of the task at hand.

72

Artificial neural networks vs Decision trees

Interpretability of a machine learning model refers to the
possibility for its users to understand its outputs (predictions), e.g.,
how they have been produced from inputs.

Interpretability has become a key issue for the widespread adoption
of machine learning models, especially in sensitive application
scenarios such as medical diagnosis.
▶ DTs are in principle interpretable by construction, in terms of

high-level IF-THEN rules, although rules associated to large
and deep DTs are likely to be very difficult to understand

▶ the input-output relationship represented by ANNs has no
analogous high-level interpretation, instead, since the output
values depend in a distributed way on all the connection
weights; for this reason models like ANNs are called “black
boxes”

73

Beyond Artificial neural networks

The learning algorithms of many machine learning models, e.g.,
Support Vector Machines and deep learning models, are based on
a similar approach as back-propagation:
▶ defining a loss function that evaluates how “far” the model

prediction is from the desired one
▶ iteratively updating the model’s parameters to minimise the

loss function on training examples, through a gradient
descent-like procedure

74

Deep neural networks
Deep neural networks (DNNs) are a recent, very popular extension
of ANNs (but early ideas date back to the 1970s).

Basically, they are multi-layer networks with many hidden layers.
An example of a (not so deep) DNN:

taken from http://neuralnetworksanddeeplearning.com

Ad hoc activation functions and modifications of the
back-propagation learning algorithm have been devised to avoid
drawbacks emerging in DNNs, in particular, very slow
convergence.

http://neuralnetworksanddeeplearning.com

75

Deep neural networks
DNNs are widely employed for computer vision tasks, for which
specialized architectures have been devised, named convolutional
neural networks (CNNs).

In computer vision tasks the CNN input is a raw image, e.g., a 2D
array of pixel values, and the units of the first hidden layers are
arranged into 2D arrays as well, to take into account the spatial
adjacency between pixels:

taken from http://neuralnetworksanddeeplearning.com

http://neuralnetworksanddeeplearning.com

76

Deep neural networks

The 2D-shaped hidden layers of CNNs carry out two specific kinds of
image processing operations:
▶ convolution layers carry out specific image filtering operations:

their connection weights are set by the learning algorithm
▶ pooling layers carry out a downsampling operation on the output

of convolution layers, using predefined connection weights

The units of convolutional and pooling layers are not fully connected.

The upper layers consist instead of a standard, fully-connected ML-FF
sub-network, typically made up of one hidden layer and the output layer.

A key difference between standard (“shallow”) and deep networks is that
the latter do not require the manual definition of image features
(attributes), but directly operate on raw images: their convolutional and
pooling layers can therefore be seen as automatic feature extractors.

77

Deep neural network resources

Some introductory and advanced readings on DNNs (and on
“shallow” NNs as well):
▶ http://neuralnetworksanddeeplearning.com

(suggested as a very gentle introduction to ANNs and DNNs)
▶ http://deeplearning.stanford.edu/tutorial/
▶ http://www.deeplearningbook.org/
▶ http://deeplearning.net/

http://neuralnetworksanddeeplearning.com
http://deeplearning.stanford.edu/tutorial/
http://www.deeplearningbook.org/
http://deeplearning.net/

