
1

Artificial Intelligence
academic year 2024/2025

Giorgio Fumera, Ambra Demontis

Pattern Recognition and Applications Lab
Department of Electrical and Electronic Engineering

University of Cagliari (Italy)

http://pralab.diee.unica.it/en
http://pralab.diee.unica.it/en

2

Introduction to Machine Learning

3

Outline

▶ Solving problem by searching
▶ Solving problems employing knowledge and reasoning
▶ Solving problems employing uncertain knowledge and

reasoning
▶ Solving problems learning by examples

4

Suggested textbooks

▶ S. Russell, P. Norvig, Artificial Intelligence – A Modern
Approach, Pearson, 2003, 2nd ed. (or another edition)

▶ C.M. Bishop, Neural networks for pattern recognition, Oxford
University Press, 1995

– ch. 1 (par. 1.1 to 1.6): Statistical Pattern Recognition
– ch. 3: Single-Layer Networks
– ch. 4: The Multi-layer Perceptron

▶ M. Nielsen, Neural Networks and Deep Learning,
http://neuralnetworksanddeeplearning.com/

http://neuralnetworksanddeeplearning.com/

5

Machine learning

There are many tasks, such as recognizing numbers or faces, that
humans can easily carry out but don’t know how.
Therefore, no algorithmic solution is known.
However, examples of the desired input-output behaviour
(“training set”) can be easily provided to a machine

Machine learning algorithms learn to perform a task from a
set of examples.

6

Historical notes

▶ Machine learning was inspired by humans’ learning capabilities
▶ Early ideas (1950s): programming a computer to learn from

experience, avoiding direct programming (e.g., learning to
play draughts by automatic analysis of expert players’ games)

▶ Early applications in pattern recognition and computer
vision tasks, e.g.:

– optical character recognition (OCR) form noisy images, as an
alternative to template matching

– aerial image recognition

7

Historical notes

▶ Main tools until the 1980s: artificial neural networks,
considered at the fringe of AI in those days

▶ Since the 1990s machine learning becomes a mainstream AI
approach to automatically extract useful knowledge from
data, thanks to

– automated gathering of large amounts of training data
already in digital form, from various kinds of sources: the Web
(e.g., browsing data, search engines, e-commerce transactions),
biological data, social networks (e.g., “likes”), etc.

– inexpensive storage
– development of methodologies strongly rooted in statistics

▶ Paradigm shift in AI: from knowledge-driven to data-driven
approaches

8

Main current applications

Machine learning is still widely used nowadays in pattern
recognition and computer vision tasks:
▶ optical character recognition (printed and handwritten)
▶ content-based image retrieval (e-commerce product retrieval)
▶ object detection, localization, recognition, tracking and

re-identification in images and videos
▶ medical image analysis (skin tumor detection)
▶ biometric identity recognition (fingerprint, face, iris, etc.)

https://www.youtube.com/watch?v=wr4rx0Spihs
▶ . . .

https://www.youtube.com/watch?v=wr4rx0Spihs

9

Main current applications

Many other applications beside computer vision:
▶ natural language processing (understanding and translation)
▶ text categorization, topic detection in texts
▶ speech recognition (transcription) and understanding
▶ data mining
▶ computer security, e.g., spam/phishing detection, intrusion

detection in computer systems and networks, botnet
detection, malware detection

▶ recommender systems, on-line advertisement (user behaviour
modelling, e.g., from social networking data)

▶ automated (high-frequency) trading
▶ . . .

10

What is machine learning suitable for?

Machine learning is suited to tasks where no algorithmic solution
is known (even if humans can easily carry them out), but
examples of the desired input-output relationship can be
provided to a machine. Some application examples:
▶ text categorisation, e.g., spam e-mail recognition
▶ handwritten digit image recognition
▶ pedestrian detection in images

Machine learning is not suited, instead, to applications where
algorithmic solutions are known, e.g., summing any two numbers.

11

Example: spam e-mail recognition

We can recognise at a glance a spam e-mail in our inbox.

It is also easy to collect from our inbox a set of e-mails, and
manually label them as “legitimate” or “spam”:

However, how could we design a spam filter, i.e., an algorithm that
automatically labels incoming e-mails as “legitimate” or “spam”?

12

Example: handwritten digit recognition

We all can recognise (more or less easily) a large variety of
handwritten characters.

Also in this case it is easy to collect a large sample of handwritten
text (e.g., from different writers), and then manually segmenting
and labelling the individual character images:

However, how could we design an algorithm that automatically
recognises handwritten character images?

13

Example: pedestrian detection in images
We can easily detect the presence of pedestrians in our field of
view, e.g., when driving a car.

It is also easy to collect a set of images, e.g., from a camera
mounted on a car, and to manually draw a tight bounding box
around each pedestrian (if any).

However, how could we design an algorithm that automatically
detects pedestrians on images acquired by a video camera, e.g.,
mounted on a self-driving car?

14

The machine learning approach

If no algorithmic solution is known, it is infeasible to explicitly
design a recognition algorithm:

recognition
algorithm

Machine Learning, Part 1, March 2017 Fabio Roli © 7

Writing a deterministic algorithm to recognize numbers
from images is very difficult…

But we can collect easily many example images…

input 7output

?
recognition
algorithm

input
legitimate

output

?
recognition
algorithm

input output

?

15

The machine learning approach

Nevertheless, the availability of examples of the desired input-output
behaviour suggests a different approach: devising a learning algorithm
that automatically builds a recognition algorithm, based on the available
examples (training set):

Machine Learning, Part 1, March 2017 Fabio Roli © 7

Writing a deterministic algorithm to recognize numbers
from images is very difficult…

But we can collect easily many example images…

recognition
algorithm

learning
algorithm

Machine Learning, Part 1, March 2017 Fabio Roli © 7

Writing a deterministic algorithm to recognize numbers
from images is very difficult…

But we can collect easily many example images…

input 7

output

input

output

training set (manually labelled)

image of any
unknown digit

class of the
input digit image

This approach is known as learning from examples, or supervised
learning, where the “supervision” consists in the examples of the desired
input-output behaviour.

16

The machine learning approach

It may seem that the problem has just been shifted to a higher
level : instead of directly designing a recognition algorithm, one
should design a learning algorithm... But, how can one do that?

Machine Learning, Part 1, March 2017 Fabio Roli © 7

Writing a deterministic algorithm to recognize numbers
from images is very difficult…

But we can collect easily many example images…

recognition
algorithm

learning
algorithm

Machine Learning, Part 1, March 2017 Fabio Roli © 7

Writing a deterministic algorithm to recognize numbers
from images is very difficult…

But we can collect easily many example images…

input 7

output

input

output

?
training set (manually labelled)

image of any
unknown digit

class of the
input digit image

However, we shall see that general (i.e., not application-specific)
and effective solutions exist.

17

Main machine learning paradigms

Supervised learning is not the only type of problem in the machine
learning field.

The main machine learning paradigms can be categorised into:
▶ supervised learning
▶ semi-supervised learning
▶ unsupervised learning
▶ reinforcement learning

18

Supervised learning

Examples of the desired input-output behaviour are available.

19

Supervised learning

Classification: predicting the class (or category) of input
“objects”, out of a predefined set of classes, e.g.:

– e-mail spam filtering: two-class problem (spam, legitimate)
– handwritten digit recognition: ten-class problem (0, 1, . . . , 9)

20

Supervised learning

Regression: predicting a numerical value, e.g., crowd counting:
how many people are there in a given video frame?

21

Semi-supervised learning
Some examples of the desired input-output relationship are
available.

22

Unsupervised learning

No examples of the desired input-output relationship are available.

23

Unsupervised learning

Clustering: discovering groups of similar examples, e.g., different
malware families

24

Unsupervised learning

Density estimation: determining the probability distribution of
data from a finite set of samples

25

Unsupervised learning

Visualisation: projecting high-dimensional data in a number of
dimensions that can be shown in a plot (three or fewer), preserving
their “structure”

26

Reinforcement learning

Finding an optimal action policy (i.e., the one that maximises a
given “reward”), based on examples of the outcome of entire
courses of action, e.g., either success or failure (no information is
available on single actions).

Application examples:
– robot control
– game playing: backgammon,

non-playing characters in video
games, etc.

https://github.com/Unity-Technologies/ml-agents

27

Reinforcement learning

The agent learns from a series of reinforcements: rewards and
punishments received for its actions by the environment.

State:
cars’ positions
street signals
lane borders
….

Actions:
turn right
turn left
accelerate
decelerate

Car

(Ego) Agent

Observations
Sensors

Environment

Reward

28

Supervised classification

This course focuses on supervised classification problems, which are
very common in real-world applications, e.g.:
▶ optical character recognition (OCR)
▶ biometric identity recognition (e.g., face and fingerprints)
▶ text categorisation (e.g., news tagging, e-mail spam filtering)
▶ scene recognition from images (e.g., indoor, outdoor, urban)
▶ computer security (e.g., malware detection)
▶ speech recognition (or speech-to-text): translating spoken language

into text (does not include language understanding)
▶ . . .

In the following we shall first see how to formulate supervised
classification problems and their main issues, then two well-known
supervised classifiers: decision trees and artificial neural networks.

E-mail spam filtering and handwriting digit recognition will be used
as application examples.

29

Supervised classification: problem formulation
A more complete scheme of a supervised classifier design process,
using handwritten digit recognition as an example: each
component is discussed in detail in the next slides.

Machine Learning, Part 1, March 2017 Fabio Roli © 7

Writing a deterministic algorithm to recognize numbers
from images is very difficult…

But we can collect easily many example images…

classification
algorithm

learning
algorithm

Machine Learning, Part 1, March 2017 Fabio Roli © 7

Writing a deterministic algorithm to recognize numbers
from images is very difficult…

But we can collect easily many example images…

input 7

output

input

output

training set (manually labelled)

image of any
unknown digit

class of the
input digit image

representation

classifier
model

30

Supervised classification: problem formulation

Main elements of the classifier design process:
▶ defining the classification task:

– what are the “objects” to be classified? (e.g., images, e-mails)
– what are the classes?

(e.g., the ten digits 0, 1, . . . , 9; spam and legitimate e-mails)
▶ collecting and labelling (usually, manually) a training set
▶ choosing a representation for the “objects” to be classified
▶ choosing a hypothesis space (also known as classifier

model in the case of supervised classification problems)
▶ choosing a learning algorithm

31

Defining the classes

In standard classification problems the set of possible classes is
finite, and has to be defined beforehand.

Classes can be represented for convenience in different ways, e.g.,
using symbols or numbers, which are usually called class labels.

The set of class labels, i.e., the possible values of the output of
the classification algorithm, will be denoted in the following by Y.

Examples of a possible choice of class labels:
▶ e-mail spam filtering: Y = {Spam, Legitimate}
▶ handwritten digit recognition: Y = {0, 1, . . . , 9}

32

Collecting a training set

Intuitively, the training set should be as much representative as
possible of the classes of interest; for instance:
▶ for e-mail spam filtering, it should include examples of the

different kinds of spam and legitimate e-mails received by a
specific user (e.g., work and personal legitimate e-mails)

▶ for handwritten digit recognition, it should include samples
from different writers or handwriting styles

Usually, to enlarge representativeness it is necessary to increase the
size of the training set. However, in supervised learning problems a
larger training set requires a higher manual annotation effort:
a trade-off between training set size and representativeness must
therefore be reached.

33

Choosing a representation for the “objects” to be classified

A suitable representation of the raw “objects” to be classified should be
chosen, as the input of the learning and classification algorithms. The
space of all possible object representations, i.e., the possible input values
of the classification algorithm, will be denoted by X .

For instance, if the raw data for a handwritten
digit recognition task consists in grey-level
images with size 28 × 28 pixels and 8 bits per
pixel, X is the set of all possible 28 × 28 matrices
whose elements are integers in the range [0, 255].

However, this representation is likely to be redundant, which does not
help the task of the classifier.

Similarly, for spam e-mail filtering the original representation of e-mails
according to existing standards (e.g., MIME) may not be the “best” one
for a classifier.

34

Choosing a representation for the “objects” to be classified

A widely used alternative to the the original, raw data representation is
to extract from the “objects” to be classified a smaller set of measures,
called attributes in machine learning and features in pattern
recognition, that retain sufficient information to discriminate between the
different classes of interest, i.e., that exhibit discriminant capability.

Each “object” can then be represented as a fixed-size attribute/feature
vector x ∈ X , where X is called attribute/feature space. For instance:
▶ handwritten digit recognition: suitable attributes could be

obtained from the orientation of edge pixels
▶ spam e-mail filtering: analogously to more general text

categorisation problems, a typical choice is to focus on the textual
content of a message (subject and body), e.g., checking whether
each of a predefined set of terms {t1, . . . , td}, that are more likely to
occur either in spam or in legitimate e-mails, is present, which can
be represented as a vector of d Boolean values: X = {True, False}d

35

Choosing a representation for the “objects” to be classified

Several kinds of representations have been defined in the machine
learning and pattern recognition fields; for instance:
▶ fixed-size attribute (feature) vectors, e.g.:

– OCR: numerical values encoding edge pixel orientation
– text categorisation: Boolean values encoding the occurrence

of a predefined set of category-related terms

▶ strings or graphs, e.g.:
– face recognition: graph of fiducial points

(e.g., pupils, mouth corners, nose tip)
Wiskott et al., Face Recognition by Elastic Bunch Graph Matching,

IEEE T-PAMI, 1997

▶ sentences in a logical language, e.g.:
– predicate logic representation of the position of pieces and of

the moves in chess games, to learn strategy rules

36

Choosing a representation for the “objects” to be classified

Formally, given a representation space X and a set of class labels
Y, every “object” can be seen as a pair (x, y) ∈ X × Y.

A classification algorithm can therefore be seen as a function
h : X 7→ Y that associates to a given input x ∈ X (e.g., a vector of
d Boolean values representing the content of an e-mail)
a predicted class label y ∈ Y (e.g., either Spam or Legitimate).

37

Choosing the hypothesis space (classifier model)

Classification algorithms usually are not expressed as computer
programs, but in many different ways, depending also on the
representation of the objects to be classified. Some examples:
▶ IF...THEN rules, where the condition part (IF...) refers to

attribute values and the consequent part (THEN...) to one of
the classes (e.g., decision trees)

▶ mathematical functions, for problems with numerical
attributes, with a numerical encoding of the classes (e.g.,
artificial neural networks)

▶ logical sentences, when the objects to be classified are
represented by logical sentences themselves

38

Choosing the hypothesis space (classifier model)

Usually machine learning methods require, during design, the
choice of a hypothesis space, which in supervised classification is
also called classifier model.

The classifier model is the set H of the possible classification
algorithms, among which the learning algorithm will select one.

For instance, decision trees and artificial neural networks are
examples of classifier models.

39

Classifier model: an example

Consider a spam e-mail filtering problem, where:
▶ e-mails are represented by feature vectors denoting the occurrence

of a predefined set T of d terms, x = (x1, . . . , xd) ∈ X = {0, +1}d ,
where the values 0 and +1 denote the absence and the presence of
a term, respectively

▶ class labels: Y = {Spam, Legitimate}

A simple classification algorithm is defined through a linear function

f (x; w) =
d∑

i=1
wixi − w0 ,

whose coefficients w = (w0, w1, . . . , wd) ∈ Rd+1 have to be set by a
learning algorithm.

40

Classifier model: an example
For given coefficients w the classifier is defined as:

h(x; w) =
{

Spam, if f (x; w) ≥ 0
Legitimate, otherwise

In words, the rationale of this kind of classifier is the following: if the sum
of the weights of the terms in T that appear in an e-mail is negative, that
e-mail is predicted to be legitimate, otherwise it is predicted to be spam.

41

Classifier model: an example

Intuitively, the learning algorithm will assign positive weights to
terms more likely to appear in spam e-mails, and negative weights
to terms more likely to appear in legitimate ones.

The corresponding classifier model is therefore the set of all
possible functions h(·; w):

H = {h(·; w) : X 7→ Y | w ∈ Rd+1}

42

Choosing a learning algorithm

Once the classifier model H has been chosen, a learning
algorithm suitable to it has to be chosen.

The goal of the learning algorithm is to select one classifier h ∈ H,
taking into account the examples of the desired input–output
behaviour in the training set.

Several learning algorithms have been defined so far, for each
possible classifier model (e.g., for decision trees and for artificial
neural networks): the task of the designer amounts therefore to
choose one of the available learning algorithms for the selected
classifier model.

43

Supervised learning: generalisation capability

The goal of supervised learning is to find a “good” predictor for all
possible instances, including unseen ones, i.e., instances not
present in the training set: this is called generalisation capability.

For classification problems, this means that a classifier should be
capable of correctly predicting the class of any instance, e.g.:

– recognising handwritten digits by different writers, or in
different writing styles, possibly not included in the training set

– recognising spam and legitimate e-mails that will be received
by a given user after the deployment of a spam filter

44

Supervised learning: generalisation capability

However, how can a good generalisation capability be
achieved, based on a finite set of examples of the desired
input-output behaviour?

45

Supervised learning: generalisation capability

Learning from examples is a form of a general procedure known in
logic as induction: the inference of a general law from particular
instances.

Induction is widely used to formulate scientific theories in
empirical disciplines like physics, and is widely studied in the
philosophy of science.

Inductive learning problems are however known to be ill-posed,
since many different explanations may agree with the observations
(examples) at hand: how to find the “correct” one?

46

Supervised learning: generalisation capability

A simple example of an induction procedure is represented by
interpolation problems, which can occur, e.g., in physics, when
trying to formulate a law representing the relationship between two
quantities x and y based on a finite set of noisy observations
{(x1, y1), . . . (xn, yn)}.
For instance, infinitely many
polynomials of degree n or higher
can interpolate with no error any
set of n points:
▶ which is the “correct” one?
▶ what if the “true”, unknown

physical law cannot be
represented by a polynomial?

47

Supervised learning: generalisation capability

In supervised learning several solutions have been devised for the
inductive learning problem of finding a hypothesis with a good
generalisation capability based on a finite set of examples.
Existing solutions are all based on two general induction principles:
▶ consistency with the observations: the hypothesis should agree

with the available examples
▶ minimal complexity: the hypothesis should be as simple as

possible – the rationale is that a simple hypothesis which agrees
with the observations is more likely to be correct than a complex
one (a principle known as Occam’s razor, from the 14th century
logician William of Occam)

48

Supervised learning: generalisation capability

For supervised classification the two principles above can be
restated as follows: given a hypothesis space H = {h : X 7→ Y}
and a training set T , the “best” hypothesis (classifier) in H is the
“simplest” classifier among the ones consistent with T .

Formally, a hypothesis h is consistent with T , if it outputs the
correct class label for all the examples in T :

h(xi) = yi , for every (xi , yi) ∈ T .

In practice, the consistency and minimal complexity principles
can be implemented in different ways for different classifier models
and different learning algorithms: in this course possible solutions
for decision trees and artificial neural networks will be presented.

49

Supervised learning: generalisation capability

It is better the classifier on the left or the one on the right?

50

Supervised learning: generalisation capability

It is better the classifier on the left or the one on the right?

51

Achieving generalisation capability: some issues

Several issues arise when trying to implement the consistency and
minimal complexity principles:
▶ how to evaluate the “complexity” of a hypothesis (classifier)?
▶ what is the computational complexity of finding the

“simplest” consistent hypothesis?
▶ what if no consistent hypotesis exists in H?
▶ in real-world problems the “correct” hypothesis is unknown:

what if it does not belong to H?
▶ what if the feature values come from noisy measurements?

In this case enforcing consistency may be counterproductive...
Another issue is how to evaluate generalisation capability itself.

52

Generalisation capability: the over-fitting issue

A typical issue of the inductive learning approach is that achieving
consistency may require a complex hypothesis space.
This may lead to over-fitting: correctly classifying all training
instances, but incorrectly classifying of many unseen ones, i.e.,
poor generalisation capability.

The over-fitting phenomenon is analogous to:
▶ exactly interpolating a set of n observations

using a n − 1 degree polynomial, instead of
using a simpler one at the expense of some
approximations

▶ students preparing for exams by rote learning
(exact knowledge of the answer to known
questions, no knowledge about any other
question)

53

How to evaluate generalisation capability?

Evaluating generalisation capability is an issue in itself:
▶ what measure to use? (e.g., is the fraction of misclassified

instances a suitable measure?)
▶ it refers to all possible instances, including unseen ones: how

can it be evaluated during classifier design, given that by
definition only training examples are available?

Several solutions have been devised in the machine learning field:
the main ones will be presented in this course.

54

Decision Trees and Artificial Neural Networks

In the following, the above general concepts of supervised
classification will be made concrete by showing their application to
two well-known classifier models:
▶ Decision Trees
▶ Artificial Neural Networks

They have an historical relevance, as they are among the early
classifier models introduced in the Artificial Intelligence field, and
are also still widely used today, especially in the form of Decision
Forests and Deep Neural Networks, respectively.

55

Decision Trees

▶ Introduced in the 1950s in psychology as models of
high-level human learning (verbal and concept learning)

▶ Represent IF...THEN... classification rules structured as a
tree graph

▶ Originally devised for categorical (e.g., Boolean) attributes
▶ Still widely used today in several applications (e.g., computer

vision, bioinformatics), especially as Random Forests
▶ Also called Classification Trees to distinguish them from

Regression Trees used in regression

56

Artificial Neural Networks

▶ Introduced in the 1950s as mathematical models of low-level
human brain functions (neurons, networks of neurons)

▶ Require numerical attributes
▶ Used in practical applications since the late 1980s
▶ Current evolution: Deep Neural Networks, and in particular

convolutional neural networks, mainly used in computer
vision and natural language processing

