Artificial Intelligence
academic year 2024/2025

Giorgio Fumera, Ambra Demontis

Pattern Recognition and Applications Lab
Department of Electrical and Electronic Engineering
University of Cagliari (lItaly)

.

http://pralab.diee.unica.it/en
http://pralab.diee.unica.it/en

Introduction to machine learning

Decision Trees

Decision Trees

Given a classification problem with d attributes xi, ..., xg with
discrete and finite domains A7, ..., Xy (e.g., Boolean attributes),
a Decision Tree (DT) is a tree graph that represents a mutually
exclusive set of classification rules of the form:

IF condition THEN class

where
» condition is a Boolean expression (also called test) consisting
of the conjunction (AND) of one or more conditions of the
form x; = v;, where i € {1,...,d} and v; € &}
P class is the class label predicted by the DT for any instance
which fulfils condition

Decision Trees: an example

Consider an e-mail spam filtering problem with class labels
Y = {Spam, Legitimate} and Boolean attributes denoting the
occurrence of the following d = 5 terms in an input e-mail:

T = {cheap, buy, bargain, university, conference}
For instance, if an e-mail contains the terms cheap and bargain
and no other term in T, its feature vector representation is:

x = (x1,...,x5) = (True,False, True,False,False)

Decision Trees: another example

The following is a possible DT (not necessarily an accurate one):

| Spaml |Legitimate|

Decision Trees

Formally:

>

>

every non-leaf node represents a test on the value of a single
attribute x;, and has one successor for each value of its domain X

every edge corresponds to one distinct value of the attribute in the
parent node, i.e., to one possible outcome of the corresponding test
every leaf node represents one class label (several leaves can share
a same class label)

every path from the root node to a leaf represents one distinct
classification rule

every attribute can appear at most once in a path from the root
to a leaf node

Decision Trees: an example

The following is a possible DT (not necessarily an accurate one), where
non-leaf nodes are represented by circles and leaf nodes by rectangles:

False

For instance, the classification rule represented by the leftmost leaf node
can be rewritten as:
IF xp = True AND x; = True AND x3 = True THEN Spam

which can be rephrased as: if the terms buy, cheap and bargain appear
in an e-mail, then that e-mail is Spam.

Decision Trees

The above properties imply that the classification rules represented
by a DT are complete and mutually exclusive, i.e., exactly one
of them applies to any given feature vector.

Note also that some attributes may not appear in a DT, i.e., the
corresponding classification rules may not take into account some
attributes.

On the other hand, every attribute may appear in different paths,
i.e., in different classification rules (as a particular case, the
attribute associated to the root node appears in all such rules).

Decision Trees: an example

The following is a possible DT (not necessarily an accurate one):

True

Legitimate

Legitimate | Spam

Note that x3 and x4 do not appear in the above DT, while x5 appears in
two different paths.

Toward a learning algorithm for Decision Trees

If DTs are used for a given supervised classification problem, the
hypothesis space (classifier model) 7 is the set of all possible,
distinct DTs that can be constructed using the class labels) and
the attribute space X.

The goal of a DT learning algorithm is therefore to select a specific
DT h € H, based on a training set 7T .

According to the general principles of inductive inference, this
amounts to select the “simplest” DT consistent with 7.

To rigorously define the above goal, it is first necessary to define a
criterion to evaluate the “complexity” of a DT.

Toward a learning algorithm for Decision Trees

A possible, intuitive measure of the “complexity” of a DT is the number
of its non-leaf (internal) nodes.

Accordingly, the simplest DTs are the ones made up of a root node whose
successors are all leaf nodes (called decision stumps), as in the example
below on the left, which refers to the previous spam filtering problem.

True @ False

Legitimate

False

The complexity of decision stumps is equal to 1. The DT above on the
right has instead a complexity of 4.

Toward a learning algorithm for Decision Trees

How to devise a learning algorithm that finds the smallest DT
consistent with the training set at hand?

A seemingly straightforward solution, is to first build all DTs of size
1, then all DTs of size 2, and so on, until a consistent DT is found.

However, what is the computational complexity of the above
brute-force solution? In other words, how many different DT
sizes exist, and how many DTs of size 1, 2, etc. can be built, for a
given classification problem?

Toward a learning algorithm for Decision Trees

To have an idea of the computational complexity of the learning
algorithm sketched above, consider the simplest case of a classification
problem with d binary (e.g., Boolean) attributes and m = 2 classes, e.g.,
the e-mail spam filtering problem in the previous example.

First, how many distinct DTs of size 1 (decision stumps) can be built?

» the root node can be associated with d different attributes, and
always has exactly two successors (leaf nodes), with edges labelled
True and False

» for each attribute x at the root node, 4 different combinations of
class labels in the corresponding leaf nodes can be obtained, as in
the example below

True ° False True ° False True Falsc True False
Tegitinats e T

This amounts to 4d distinct DTs of size 1.

Toward a learning algorithm for Decision Trees

What about the number of distinct DTs of size 27

» two possible DT structures
can be obtained

» for each structure, there are d(d — 1) choices for the attributes of
the two nodes (by definition each attribute can appear at most once
in a same path from the root to a leaf). ..

» . ..and 23 way to dispose the 2 class labels in the 3 leaf nodes

This amounts to 2 x d(d — 1) x 23 = 24d(d — 1) distinct DTs of size 2.

Toward a learning algorithm for Decision Trees

» What about the number of distinct DTs of size 3, 4, etc.?

» And, what about the largest DTs?

— all their leaf nodes are at depth d, since each attribute can
appear at most once in a same path from the root to a leaf.

— the number of not-leaf nodes?

Toward a learning algorithm for Decision Trees

> The largest DT will be perfect binary decision trees (with 2 edges
for each not-leaf node and all the labels at the same level).

» The number of nodes at the depth n is equal to the summation of
the first n terms of a geometrical serie:
Ss=arl+art+arr+. . 4+arm=>_ark

Therefore, it can be computed in closed form.
If r=1, then S, = a(n+1)

Otherwise S, = a (152)

v v. vy

In our case r = 2, thus, S, =2"t1 — 1

Toward a learning algorithm for Decision Trees

» What about the number of distinct DTs of size 3, 4, etc.?

» And, what about the largest DTs?

— all their leaf nodes are at depth d, since each attribute can
appear at most once in a same path from the root to a leaf.

— the number of not-leaf nodes is 1+2+4+ ... 42971 =29 _1

— the number of leaf nodes is 29

— to compute the number of possible DTs, one should consider
the possible distinct combinations of attributes at inner nodes
and of class labels at the leaf nodes. ..

» Finally, what about problems with m > 2 classes (e.g., in
handwritten digit recognition, m = 10...) and attributes whose
domains are made up of more than two values?

Toward a learning algorithm for Decision Trees

The above examples should make it clear that the brute-force
learning algorithm sketched above has a huge computational
complexity.

More formally, it has been shown that finding the smallest
consistent DT (e.g., by constructing all DTs of size 1, 2, etc., until
a consistent one is found) is a NP-hard problem.

A naive learning algorithm for Decision Trees

One may wonder whether focusing just on finding a consistent
DT, disregarding its size (i.e., the minimal complexity
requirement), may allow to devise a DT learning algorithm
characterised by a low computational complexity.

It turns out that a very simple solution exists to this problem:
1. for each training example (x, y):

1.1 build a distinct path of depth d from the root to a leaf node,
including all the d attributes with their values x1,...,Xq, in
any order (consistently with previously built paths, if any)

1.2 label the leaf node with y

2. add a leaf note to each incomplete branch (if any), and
associate it a randomly chosen class label in Y

A naive learning algorithm for Decision Trees

As an example, consider again the above Boolean attributes for an e-mail
spam filtering problem, associated to the terms research, cheap,
travel, conference and price, and assume that a training set 7 of
ten e-mails, six legitimate (L) and four spam (S), has been collected for
building a DT, with the following attribute values:

D yvIixx x x3 X2 X5
mq L | T T T T F
md L|T F T F T
mi L|T T F T F
mi L|F F F T T
ms L|F F T F F
mg L|T T T F T
my S| F T T T F
mg S|F T F T F

S T F F F T

S F T T T T

A naive learning algorithm for Decision Trees

If the above algorithm is applied starting from m; (a legitimate
e-mail), and processing the attributes in the order x1, x2, x3, X4, X5,
the following partial DT is obtained:

Legitimate

Note that, regardless of how the other branches will be completed,
this DT is guaranteed to correctly classify mj.

A naive learning algorithm for Decision Trees

If the next example processed by this algorithm is my (another
legitimate e-mail), the previous branch x; = True can be initially
exploited (since also for my the value of xj is True), then it is
necessary to build a new branch starting from x, = False:

Legitimate

The updated, partial DT is guaranteed to correctly classify both mg
and my.

A naive learning algorithm for Decision Trees

The learning algorithm proceeds similarly on each of the remaining
training examples.

After that, some branches remain incomplete, e.g., the branch
corresponding to x; = True, x, = False, x3 = True, x4 = True, since no
training example exhibits the corresponding attribute values.

A leaf node with a
randomly chosen class
label is therefore added to
complete such branches, as
in the example on the right
(for simplicity, the
complete branches
corresponding to each
training example are not
shown):

Legitimate

A naive learning algorithm for Decision Trees

The above learning algorithm guarantees consistency with 7 (unless
there are examples of different classes with identical attribute values),
but it disregards DT size.

What about its generalisation capability?

Note first that DTs consistent with 7 and much smaller than the ones
produced by the above learning algorithm usually exist. In the above toy
example it is easy to manually build some of them, like the following one:

Which DT is more likely to generalise to unseen e-mails?

A naive learning algorithm for Decision Trees

Note again that the above learning algorithm builds a specific DT
branch, i.e., a specific IF...THEN. .. classification rule, for each
training example. In practice, the resulting DT just memorises the
training examples.

Since each classification rule is “supported” by a single example, the
resulting DTs:

> are very unlikely to capture the main distinctive characteristics of
the different classes: instead, they over-fit the training set, and
exhibit a poor generalisation capability to unseen examples

» tend to be much larger than necessary: much smaller, but still
consistent DTs exist

This is a concrete example, specific to DTs, that highlights the
importance of the minimal complexity principle to prevent over-fitting.

Effective learning algorithms for Decision Trees

A trade-off between computational complexity and generalisation
capability is therefore required toward devising a “good enough” DT
learning algorithm.

A common solution is to construct a “reasonably small”, consistent
DT, using some low-complexity heuristics that favour smaller DTs over
larger ones.

This approach is obviously suboptimal, since it does not guarantee to
find the smallest consistent DT; nevertheless, it allowed to devise both
effective and efficient DT learning algorithms.

In the following, one of the first and simpler DT learning algorithms will
be presented, named ID3 (lterative Dichotomizer v. 3), by J.R. Quinlan
(1986).

The ID3 learning algorithm

ID3 is a recursive, top-down algorithm, that builds a DT from the
root to the leaves.

The key intuition is that, to obtain a small and consistent DT,
when an edge is reached by training examples of different classes,
the inner node to be added should be associated with the most
“discriminant” attribute for those examples, i.e., an attribute
which splits them as much as possible into subsets of examples of
a same class.

Indeed, if all the training examples reaching an edge belong to a
same class y, that edge can be immediately completed with a leaf
node associated to y.

Sketch of the ID3 learning algorithm

To show how ID3 works, consider first the same training set 7 of the
previous example, with an additional Boolean attribute xg corresponding,
e.g., to the term algorithm:

D vy lxx x x3 X4 X5 X
m; L | T T T T F T
mo L | T F T F T T
m3 L| T T F T F T
my L|F F F T T T
ms L | F F T F F T
mg L | T T T F T T
my S F T T T F F
ms S|F T F T F F
m S|T F F F T F
myp S| F T T T T F

Sketch of the ID3 learning algorithm

First, ID3 builds the root node: which attribute should be associated to
it? Which attribute is most “discriminant” for 77

Note that all training examples for which x¢ = True (i.e., mj to mg), are
legitimate, and all the ones for which x¢ = False (m7 to mjg), are spam.

In other words, xg in the root node splits 7 into subsets whose elements
belong to a single class, and has therefore the highest possible
discriminant capability.
This allows to build a consistent DT of the
smallest possible size, i.e., a decision stump
(1 inner node), corresponding to two @

.) True False
classification rules:

|Legitimate| |Spam|

IF x¢ = True THEN Legitimate
IF x¢ = False THEN Spam

Sketch of the ID3 learning algorithm

However, in real-world problems it is unlikely that a single attribute
allows to perfectly split the whole training set.

The discriminant capability of all the attributes has therefore to be
evaluated and compared.

NB: In the following, only a qualitative evaluation will be made.
A formal, quantitative criterion will be presented later.

Sketch of the ID3 learning algorithm

Consider again the original training set presented above, without xg.

Let us first evaluate the choice of x5 for the root node: this corresponds
to building two partial rules: IF x5 = True..., and IF x5 = False...,
and splits the training examples as shown below:

%e

L: mz, ms, me L: my, ms, ms
S: mg, Myo S:ms, mg

Remember that 7 contains 6 legitimate and 4 spam e-mails.
If x5 is chosen for the root node, it splits 7 into two subsets, each one
containing 3 legitimate and 2 spam e-mails.

Accordingly, xs does not seem a good choice: it does not split 7 into
subsets with a high predominance of any of the classes.

Sketch of the ID3 learning algorithm

Consider now using x3 for the root node:

H}Q@{lse

L: my, mz, ms, Mg L: ms, my
S: Mz, Mio S: Mg, Mg
The corresponding split is partly better than x5 and partly worse:

» for x3 = True, the class ratio is 1:2, which is more skewed
toward one of the classes than in the whole T

» for x3 = False, the class ratio is 1:1, with no predominance
of any class

Accordingly, x3 does not look better than xs.

Sketch of the ID3 learning algorithm

If x1 is used, instead, the following split is obtained:

%e

L: m1, Mz, M3, Mg L:my, ms
S:mg S: my, Mg Mo

This split is qualitatively better than the previous ones:
» for x; = True, the class ratio is 1:4

» for x; = False, the class ratio is 2:3

Sketch of the ID3 learning algorithm

It is not difficult to see that x» and x4 produce splits with identical class
ratios, which are not as good as x; (this is left as an exercise).

Accordingly, ID3 chooses the attribute x; for the root node:

Tru/eQD{lse

L: my, mz, ms, me L:ms, ms
S:me S: my, Mg Mo

Since both subsets produced by this split contain training examples of
different classes, it is not possible to get a DT consistent with 7 by
adding leaf nodes.

Therefore, ID3 proceeds by recursively building a sub-tree for both
edges, aimed at correctly classifying the corresponding subsets of T,
using all the attributes except for x;.

Sketch of the ID3 learning algorithm

The sub-tree for the branch x; = False is built in the same way, starting
from its root; in particular:

» only the training examples that reach this branch are considered
(see above): my, ms, m7, mg and mjg

> all the attributes except for x; (already used in this branch) are
considered

It is easy to see that attribute x, perfectly splits these five examples,
and therefore will be chosen by ID3, which allows to complete both its
branches with a leaf node:

|Spam| |Legitimate

L - L:ms, ms
S: Mz, Mg Mo S: -

Sketch of the ID3 learning algorithm

ID3 then proceeds on the branch x; = True of the root node,
focusing this time on mj, mp, m3, mg and mg.

Although none of the remaining attributes can perfectly split these
examples, x3 looks as a good choice, since the condition

x1 = True and x3 = True

is fulfilled by only legitimate examples:

Sketch of the ID3 learning algorithm

ID3 now proceeds along the branch x; = True and x3 = False, which
corresponds to m3 and mg, and evaluates the discriminant capability of the
remaining attributes, xo, x4 and xs.

Among them, x4 is chosen, since it perfectly splits m3 and mg:

The DT is now complete, therefore ID3 stops and returns it.

This qualitative example shows that ID3 allows to build much smaller,
consistent DTs than the naive learning algorithm previously presented,
although it does not guarantee to find the smallest DT.

Sketch of the ID3 learning algorithm

A pseudo-code description where only the criterion for evaluating the
most discriminant attribute is not described:

function DT__LEARNING (T, A) returns a decision tree

if T is empty or A is empty then
build a leaf node L and associate it with majoritylabel(T)
return L

if T contains examples of a single class y then
build a leaf node L and associate it with the label y
return L

root < create the root node of a new decision tree

X < the most discriminant attribute in A

associate root with x

A — A—{x}

for each value v € X do
T’ < the subset of T where x = v
subtree <~ D'T__LEARNING (T', A')
add to root an edge labelled as v
connect appropriately that edge with the root node of subtree

return root

Sketch of the ID3 learning algorithm

Where majoritylabel is a function that get a dataset and, if the
dataset is not empty and there is a majority label return that label,
otherwhise (if there isn't a majority class or if the dataset is
empty), return a random label.

Evaluating attributes’ discriminant capability

The heuristic used by ID3 is to associate every inner node n of a
DT (including the root) with the attribute (among the ones not
already used in the same branch) that splits the training examples
arriving at n into subsets made up of examples belonging “as much
as possible” to a single class.

It is therefore necessary to define a measure to evaluate the extent
to which the training examples arriving at n are split by a given
attribute into homogeneous subsets.

To this aim, ID3 uses the entropy of a probability distribution
function.

Evaluating attributes’ discriminant capability

Consider first the root node of a DT, for which the whole training set
and all the attributes have to be considered.

For instance, these are two possible choices for the root node, for the
training set 7 of the previous example:

%e %e

L: mz, ms, ms L: mi, ms, ms L: my, mz, ms, Ms L:ms, ms
S: Mg, Mo S:m7, mg S:my S:mz, Mg My

The corresponding splitting of 7 produces the following class ratios
(legitimate : spam)
» x5: 3:2 for both its values

» xi: 4:1 for x; = True, 2: 3 for x; = False

Evaluating attributes’ discriminant capability

For a given attribute x, we can compute the conditional
probability density functions P(Y|X), where Y and X denote
random variables corresponding to the class label and the value
of the attribute x of any unknown (random) example.

In the spam filtering example, each attribute x splits 7 into two
subsets corresponding to x = True and x = False: therefore
P(Y|X), with Y € Y = {Legitimate, Spam} denotes the two
conditional probability density functions:

> P(Y|X = True)

» P(Y|X = False)
i.e., the probability that an unknown (random) e-mail is legitimate
(or spam), given that it contains (or does not contain) the term
associated to x.

Evaluating attributes’ discriminant capability

For instance, consider again the attribute xs:

%e

L: mz, ms, me L:my, ms, ms
S: me, Mo S: my, mg

The estimate of P(Y|Xs = True) is
> P(Y = Legitimate|Xs = True) = 3 = 0.6
> P(Y = Spam|Xs = True) = £ = 0.4

and the estimate of P(Y|Xs = False) is
> P(Y = Legitimate|Xs = False) = 2 = 0.6

> P(Y = Spam|Xs = False) = % =0.4

Evaluating attributes’ discriminant capability

Similarly, for the attribute x;:

Tfy@%‘a

L: my, mz, ms, me L:ms, ms
S:me S: myz, Mg Mo

The estimate of P(Y|X; = True) is

> P(Y = Legitimate|X; = True) = 7 = 0.8

» P(Y = Spam|X; = True) = % =0.2

and the estimate of P(Y|X; = False) is

> P(Y =Legitimate|X; = False) = 2 = 0.4

» P(Y = Spam|X; = False) = % =0.6

Evaluating attributes’ discriminant capability

As a final example, if also the attribute xg considered previously was
used, one would obtain a perfect split:

True @ False

L: my, mz, M3, M4, Ms, Ms L:i—
S:— S: my, Mg, Mg, Myo

The estimate of P(Y|Xs = True) is
> P(Y = Legitimate|Xs = True) = 2 =1
> P(Y = Spam|Xs = True) = 2 =0

and the estimate of P(Y|Xs = False) is

> P(Y = Legitimate|X; = False) = % =0

> P(Y = Spam|Xg = False) = 1 =1

Evaluating attributes’ discriminant capability

If an attribute x has the highest discriminant capability (i.e., it
perfectly splits the training examples), then, for each of its values v

» P(Y =y,|X = v) =1, for one of the classes y,
» P(Y =y|X =v) =0, for every other class y # y,

Instead, if an attribute x has the worst discriminant capability, i.e., it
splits the training examples uniformly across all classes for each of its
values v, then:

1

P(Y:y|X:v):E for each y ,

where C is the number of classes.

We would like to have a single value that allows us to understand which
attribute is more discriminant.

Evaluating attributes’ discriminant capability

Remember now that the entropy of random variable Y is a measure of
uncertainty that is associated with its distribution. For a discrete
random variable Y with finite domain YV = {y1,...,yc} it is defined as:

C

H(Y) ==Y _P(Y = yi)log, P(Y = y) bits.
i=1

For example, a fair coin has the same probability to come up heads or
tails when flipped. Therefore, its entropy is:

H(fair) = — (0.5/0,0.5 + 0.5/0g,0.5) = 1 bit.

If instead we consider an unfair coin that comes up head 99% of the
time, intuitively, has less uncertainty (if we guess heads we'll be wrong
only the 1% of the times):

H(unfair) = — (0.99/0g,0.99 + 0.01/0g,0.01) = 0.08 bits.

Evaluating attributes’ discriminant capability

It is known that H(Y) € [0, log, C]:

> if all values y; are equiprobable, i.e., P(Y = y;) = % for all y;
(maximum uncertainty), then H(Y) = log, C

> if only one value can occur, i.e., P(Y = y;) =1 for a given y;, and
P(Y =y;) =0 for all i #j (no uncertainty), then H(Y) =0

In particular, for binary random variables (C = 2):

H(Y) € [0,log,2] =[0,1] .

Evaluating attributes’ discriminant capability

Similarly, the conditional entropy of a random variable Y given
another random variable X quantifies the amount of uncertainty
about Y when the value of X is known, and is defined in terms of
the conditional probability density function P(Y|X):

H(Y|X) = ZP H(Y|X =v),

where the entropy H(Y|X = v) is in turn defined as:

C
H(Y|X =v) = —ZP(Y =yl X =v)log, P(Y = yilX = v) .
i=1

Evaluating attributes’ discriminant capability

It is now easy to see that the conditional entropy of P(Y|X) can
also be used to measure the discriminant capability of an attribute
x, since it exhibits the following properties:
> H(Y|X) =0, if x perfectly splits the training set
» H(Y|X) = log, C, if x uniformly splits the training set, for
each of its values

Accordingly, the conditional entropy H(Y|X) is used by ID3 to
evaluate the discriminant capability of each attribute x, with
respect to the training set 7, for the root node of a DT.

Discriminant capability of attributes: examples

As an example, consider again the attribute xs:

H}Q{D{lse

L: mz, ms, Ms L: my, ms, ms
S Mo, Mo S:mz, mg

The conditional entropy of P(Y|Xz) is:

HYIXs) = > P(Xs=v)H(Y|Xs =v).

ve{True,False}

First, since we have 5 training examples with x5 = True and 5 examples
with x5 = False, P(Xs) can be estimated as:

P(Xs = True) = P(Xs = False) = % =05.

Discriminant capability of attributes: examples

To compute H(Y|Xs = True) and H(Y|Xs = False), note first that
there are 3 legitimate and 2 spam e-mails in 7 for both x5 = True and
x5 = False; therefore:

P(Y =L|Xs =True) = 3/5=0.6,
P(Y =8|Xs =True) = 2/5=04.

It follows that:

H(Y|Xs = True) = —0.6log, 0.6 — 0.4 log, 0.4 ~ 0.97 .
A similar computation leads to:

H(Y|Xs = False) = —0.6log, 0.6 — 0.4 log, 0.4 = 0.97 .
One finally obtains:

H(Y|Xs) ~ 0.5 % 0.97 + 0.5 % 0.97 = 0.97 .

Discriminant capability of attributes: examples

Consider now the attribute xi:

“}Q%lse

L: my, mz, Mg, Me L:ms, ms
S:me S: my, Mg Myo

The conditional entropy of P(Y|X1) is:

HYIX) = S P(X=v)H(Y|X = v)

ve{True,False}

Also in this case there are 5 training examples with x; = True and
5 with x; = False, therefore:

5
P(X1 = True) = P(X; = False) = 0= 0.5.

Discriminant capability of attributes: examples

To compute H(Y|X; = True), consider that there are 4 legitimate and 1
spam e-mail with x; = True, and therefore:

P(Y =L|X; =True) = 4/5=1038,
P(Y =8|X; =True) = 1/5=0.2.

It follows that:
H(Y|X; = True) = —0.8log, 0.8 — 0.2log, 0.2 ~ 0.72 .

To compute H(Y|X; = False), noting that there are 2 legitimate and 3
spam e-mail with x; = False, one obtains:

P(Y =L|X; =False) = 2/5=04,
P(Y =8|X; =False) = 3/5=06.

Discriminant capability of attributes: examples

One then gets:
H(Y|X; = False) = —0.4log, 0.4 — 0.6 log, 0.6 ~ 0.97 ,
which finally leads to:

H(Y|X1) ~ 0.5 %0.72 + 0.5 % 0.97 = 0.845 .

Note that H(Y|X1) < H(Y|Xs); therefore, x; is more
discriminant than x5 for the root node of a DT.

Evaluating attributes’ discriminant capability

The discriminant capability of attributes at inner nodes different from
the root can be computed similarly.

For instance, assume that the attribute x; has been chosen for the root
node, and that a different attribute x # x; is being evaluated for the
successor of the root corresponding to x; = v;:

In this case only the training examples for which x; = v; have to be
considered.

Accordingly, the conditional entropy that has to be computed is:

HYIX, X =vi) =Y P(X = v[Xi = v)H(Y|X = v, X; = v) .

Discriminant capability of attributes: examples

As an example, assume that x; has been chosen for the root node in the
previous spam filtering example, and consider the discriminant capability
of xo on the edge corresponding to x; = False:

L— L:ma, ms
S: m7, Mg Mo S:—

In this case only m4, ms, m7, mg and mjo have to be considered, i.e., 2
legitimate and 3 spam e-mails.

The corresponding conditional entropy is:

H(Y| X5, Xy = False)
= Z P(Xa = v|X; = False)H(Y|X; = v, X; = False) .

ve{True,False}

Discriminant capability of attributes: examples

Proceeding similarly as above, note first that:
P(Xy = True|X; =False) = 3/5=0.6,
P(X; = False|X; =False) = 2/5=04.
Since x, perfectly splits the considered training examples, one gets:

P(Y =L|X, = True, X; =False) = 0,
P(Y =8|X; = True, X; =False) = 1,
and therefore H(Y|X; = True, X; = False) = 0.

Similarly, H(Y|X> = False, X; = False) = 0.

It easily follows that the conditional entropy of x», in this node, equals 0:

H(Y|X2, X, = False) = 0.6 x 0+ 0.4 x 0 =0 .

Discriminant capability of attributes: examples

As a final example, consider the discriminant capability of x3 along
the edge corresponding to x; = True:

The corresponding conditional entropy is:

H(Y|X3, X1 = True)
= Z P(X3 = v| X1 = True)H(Y|X3 = v, Xy = True) .

ve{True,False}

Discriminant capability of attributes: examples

Proceeding as above:

P(X3 = True|X; = True) = 3/5=10.6,
P(X3 = False|X; = True) = 2/5=04.

Considering the split corresponding to x3 = True:

P(Y =L|X3 = True, X; = True) =1,
P(Y = 8|X; = True, X; = True) =0,

and therefore H(Y|X5 = True, X; = True) = 0.

Instead, for x3 = False we get two training examples uniformly
distributed among the two classes, which implies:

H(Y|X3 = False, X; = True) =1.
It follows that:

H(Y|X3,X; =True) =0.6 x0+04x1=04.

Evaluating attributes’ discriminant capability

To sum up, to evaluate the discriminant capability of any attribute
x associated with any inner node n of a DT, ID3 computes the
conditional entropy of the probability distribution function
P(Y|X,...)
» conditioned, beside X, on the values of all the other
attributes (if any) in the same branch

» considering only the training examples that arrive at node n

The lower the conditional entropy, the higher the discriminant
capability. Accordingly, the attribute with the lowest conditional
entropy is chosen.

Evaluating attributes’ discriminant capability

Other measures have also been adopted by other learning
algorithms, such as the Gini index, a statistical measure originally
proposed by the Italian statistician Corrado Gini (1884-1965) to
evaluate the degree of variation represented in a set of values,
which is used especially in analysing income inequality.

Evaluating attributes’ discriminant capability

According to Shannon's Information Theory, the entropy H(Y) of a
random variable Y can also be seen as the expected amount of “missing”
information on its value (measured in bits).

Therefore, for DTs the entropy of the class label H(Y') can be seen as
representing the “missing” information that is needed to answer the
question: “What is the class label of a random instance?”

Similarly, the conditional entropy of a given attribute x associated to the
root node, H(Y'|X), is the amount of information that is needed to
answer the same question, after observing the value of X.

Accordingly, choosing the attribute with the lowest conditional entropy
amounts to minimising the “missing information”, i.e., to maximise the
information gain H(Y) — H(Y|X).

The information gain quantifies how much information we have gained
after a split.

Evaluating attributes’ discriminant capability

The conditional entropy turns out to be ineffective as a measure of
discriminant capability for DTs, if an attribute is irrelevant to the
class or has many values.

Consider for instance the problem of predicting whether a given
person has a particular disease () = {healthy, i11}), based on
the outcome of some medical examination (e.g., blood test) and
other information.

The birth date d is likely to be irrelevant to the health status;
however, if it is included among the attributes, it is likely to exhibit
a different value for each person in the training set.

Evaluating attributes’ discriminant capability

Healthy |

Healthy | | I11 | | I11

H: 1 H: 0 H: 1
I: 0 I:1 I: 0

L

4
H(Y[X)=> -0=
1

Its conditional entropy H(Y'|D) is therefore likely to be equal to 0,
and thus it would be selected as the most discriminant attribute
for the root node. This produces a minimal, consistent DT, which
however is likely to have no generalisation capability at all.

Evaluating attributes’ discriminant capability

To avoid the drawbacks of conditional entropy (information gain),
ID3 actually uses a variant of it, named gain ratio, which is more
robust to irrelevant attributes and to attributes with many values.

InformationGain
Splitinfo

where: ,
Splitinfo = — Z pilogop; with p; = W’

1

Where v is the number of values that the attribute can assume, N
is the number of training samples arriving into the branch splitted
by the attribute X, while N; is the number of samples that arrive
into branch edge created by the i-th value of X. The split

Information is higher for attributes with more values.

Evaluating attributes’ discriminant capability

Let's consider these two attributes for which the samples are
equally distributed between the different values they can assume:

For the attribute A the Split Information is:

2 2
-2 —logy- =1.
49824
For the attribute B the Split Information is:

1

1
4 ZJog,s = 2.
4982,

Evaluating attributes’ discriminant capability

You can see the Split Information as the entropy of the considered

attribute when we consider only the samples arriving into that
branch.

For instance, the gain ratio of an attribute x at the root node of a
DT is defined as:
H(Y) — H(Y[X)
H(X)

Extensions of ID3 to numerical attributes

For a numerical attribute x whose domain is a finite subset of integers,
X ={x1,...,xp} CI (e.g., the number of edge pixels in an image),
adding an edge for each of its values would be impractical for large n,
and may also lead to over-fitting.

For numerical attributes, either integer or real, whose domain X is
infinite (e.g., the frequency of a term in an e-mail), this is not even
possible.

The solution used by ID3 and by other DT learning algorithms is to
always use a binary split, i.e., subdividing X" into two subsets
corresponding to the tests Xower = {Xx € X : x < t} and

Xupper = {x € X : x > t}, for a given threshold t:

Extensions of ID3 to numerical attributes

The threshold t has to be chosen by the learning algorithm.

To limit the number of threshold values to choose from, 1D3 takes
into account the different values of the attribute x among the
training examples that reach the considered node.

Assuming that among such examples x takes g different values
X(1) < X(2) - - < X(q) the following g — 1 values of t are considered:

_ X(k+1) T X(k)
ty = ——~———

k=1,...,9—-1.
2 ’ ’ ?q

Each of these values produces a different split of the training
examples of interest, according to the tests X < tx and X > t;:
among them ID3 chooses the one corresponding to the minimum
conditional entropy.

Decision regions for numerical attributes

Any trained classifier can be seen as a function mapping from the
attribute space to the label space, h: X —).

The regions of the attribute space X’ corresponding to the different
class labels are named decision regions.

If the number d of attributes is not larger than 3, the decision
regions of a classifier can be plotted in a d-dimensional graph.

Decision regions for numerical attributes

For instance, consider the DT on the
right for a generic classification
problem with labels A and B, with

d = 2 numerical attributes x; and x»
both ranging in [0, 1], with binary
splits produced by ID3.

The corresponding decision regions X

are shown in the plot on the right. 7 3

This example points out that the b

boundaries of the decision regions of 5 A

a DT are made up of lines parallel
to the axes of the attribute space. Xi

Over-fitting in Decision Trees

Despite the choice of the most discriminant attribute for each inner
node allows ID3 to build “small enough” DTs, the consistency
requirement can nevertheless cause some degree of over-fitting.

This often happens when a too deep branch needs to be built to
correctly classify a small number of training examples.

In this case the corresponding classification rule (leaf) is supported
by only a few examples, and is therefore less likely represent a
general characteristic of one of the classes, i.e., to generalise to
unseen examples.

Note that the “naive” learning algorithm previously described
builds a DT branch of maximum depth (i.e., including all the
attributes) to correctly classify a single training example: this is
almost guaranteed to incur a severe over-fitting.

Mitigating over-fitting: Decision Tree pruning

To mitigate over-fitting, DT learning algorithms seek a trade-off
between DT size and consistency: they avoid building deep
branches devoted to a small number of examples, at the expense of
consistency.

This can be achieved in two different ways:

> offline: after a consistent DT is built by a learning algorithm
(e.g., ID3), it is “pruned” by removing sub-trees according to
some criterion (hence the name pruning), and replacing them
with a leaf

» online, by stopping the construction of a DT branch when
some criterion is satisfied, and adding a leaf

In both cases, the leaf is usually associated with the label of the
majority class among the training examples that reach it, to
minimise the number of misclassifications in the training set.

Mitigating over-fitting: Decision Tree pruning

Some possible pruning criteria (also applicable in the online
fashion):

P setting a maximum tree depth

» the number of training examples reaching a node is lower than
a predefined value

» the value of the splitting criterion (e.g., the gain ratio or the
Gini index) of the most discriminant attribute exceeds a
predefined threshold (i.e., the best attribute has a too low
discriminant capability, which may require a too high number
of subsequent splittings to reach consistency)

Mitigating over-fitting: Decision Tree pruning

As an example, consider the DT built
by ID3 for the spam filtering problem
considered above, for a training set
of ten e-mails:

If the pruning criterion is to remove
subtrees reached by less than 3
training examples, the sub-tree
whose root node is associated with
Xz should be removed and replaced
with a leaf. Since it is reached by
one legitimate and one spam e-mail,
the class label can only be chosen
randomly, e.g., Spam:

Over-fitting in Decision Trees

The over-fitting phenomenon can be observed in DTs by evaluating the
number of misclassified training examples and an estimate of the
generalisation capability, evaluated, e.g., using a different set of labelled
examples (see below), as a function of DT size, for a fixed training set,
and for different values of the pruning threshold.

A typical behaviour is represented in the figure below: the training error
keeps decreasing as DT size increases, whereas the generalisation error
initially decreases, then starts increasing at some point.

Error

— training error

- - - generalization error

adapted from: L. Rokach and O. Maimon,
Data Mining with Decision Trees — Theory
and Applications, 2nd Ed.,

WorldScientific, 2014 Tree Size (Number of Nodes)

