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Introduction

Consider the following problems, and assume that your goal is to
design rational agents, in the form of computer programs,
capable of autonomously solving them.
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Automatic theorem proving

Write a computer program capable to prove or to refute the
following statement:

Goldbach’s conjecture (1742)
For any even number p ≥ 2, there exists at least one pair
of prime numbers q and r (identical or not) such that

q + r = p
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Game playing
Write a computer program capable of playing the wumpus game, a
text-based computer game (G. Yob, c. 1972) used in a modified version
as an AI’s toy-problem. A basic version:

▶ the wumpus world: a cave
made up of connected rooms,
bottomless pits, a heap of
gold, and the wumpus, a
beast that eats anyone who
enter its room
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Figure 7.2 FILES: figures/wumpus-world.eps (Tue Nov 3 16:24:13 2009). A typical wumpus
world. The agent is in the bottom left corner, facing right.▶ goal: starting from room (1,1), find the gold and go back to (1,1),

without falling into a pit or hitting the wumpus
▶ main rules of the game:

– the content of any room is known only after entering it
– in rooms neighboring the wumpus and pits a stench and a

breeze is perceived, respectively
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Knowledge-based systems

Humans usually solve problems like the ones above by combining
two high-level capabilities: abstract knowledge representation
and reasoning.

Knowledge-based systems aim at mechanizing the above
human capabilities:
▶ representing knowledge about the world
▶ reasoning to derive new knowledge and to guide action
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An example: playing the wumpus game

Consider the following initial configuration of the wumpus game,
and remember that the player knows the content of any room only
after entering it:
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Figure 7.2 FILES: figures/wumpus-world.eps (Tue Nov 3 16:24:13 2009). A typical wumpus
world. The agent is in the bottom left corner, facing right.If you were the player, how would you reason to decide the next

move to do at each game step?
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An example: playing the wumpus game
Sketch of a possible reasoning process for deciding the next
move, starting from the configuration previously shown (some
moves are omitted).

a)
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Figure 7.3 FILES: figures/wumpus-seq01.eps (Tue Nov 3 16:24:10 2009). The
first step taken by the agent in the wumpus world. (a) The initial situation, af-
ter percept [None ,None,None, None,None]. (b) After one move, with percept
[None,Breeze ,None,None ,None].
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ter percept [None ,None,None, None,None]. (b) After one move, with percept
[None,Breeze ,None,None ,None].
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Figure 7.4 FILES: figures/wumpus-seq35.eps (Tue Nov 3 16:24:11 2009). Two later stages in the
progress of the agent. (a) After the third move, with percept [Stench ,None, None,None,None ]. (b)
After the fifth move, with percept [Stench ,Breeze ,Glitter ,None, None].
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progress of the agent. (a) After the third move, with percept [Stench ,None, None,None,None ]. (b)
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Main approaches to AI system design

Procedural: the desired behavior (actions) are encoded directly as
program code (no explicit knowledge representation and reasoning).

Declarative: explicit representation, in a knowledge base, of
▶ background knowledge (e.g., the rules of the wumpus game)
▶ knowledge about a specific problem instance (e.g., what the

agent knows about a specific wumpus cave it is exploring)
▶ the agent’s goal (e.g., finding the gold and going back to the

starting square, without falling into a pit or hitting the
wumpus)

Actions are then derived by reasoning.
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Architecture of knowledge-based systems

Knowledge
base

Reasoning
module
(Inference
engine)

Sensors
update

Actuators
actions

update

update

Environment

Main feature: separation between knowledge representation
and reasoning
▶ the knowledge base contains all the agent’s knowledge about

its environment, in declarative form
▶ the inference engine implements a reasoning process

(algorithm) to derive new knowledge and to make decisions
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Main applications in computer science and AI

Artificial Intelligence:
▶ expert systems (medicine, engineering, finance, etc.)
▶ automatic theorem provers

Computer science:
▶ logic programming languages (Prolog, etc.)
▶ databases (relational calculus, SQL)
▶ semantic Web
▶ satisfiability (SAT) problems:

hardware/software design, planning (travel, logistics, ...), etc.
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A short introduction to logic

▶ What is logic?
▶ Propositions and argumentations
▶ Logical (formal) languages
▶ Logical reasoning
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Logic

Logic is one of the main tools used in AI for
▶ knowledge representation: logical languages

– propositional logic
– predicate (first-order) logic

▶ reasoning: inference rules and algorithms

Some of the main contributions:
▶ Aristotle (4th cent. bc): the “laws of thought”
▶ G. Boole (1815–64): Boolean algebra (propositional logic)
▶ G. Frege (1848–1925): predicate logic
▶ K. Gödel (1906–78): investigation of the limitations of logic,

incompleteness theorem
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Logic

A possible definition of logic:
Logic is the study of conditions under which
an argumentation (reasoning) is correct.

This definition involves the following concepts:
▶ argumentation: a set of statements consisting of some

premises and one conclusion, e.g.:
All men are mortal; Socrates is a man;
then, Socrates is mortal

▶ correctness: an argumentation is said to be correct when its
conclusion cannot be false when all its premises are true

▶ proof: a procedure to assess correctness
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Propositions

Natural language is very complex and vague, and therefore difficult
to formalize. Logic considers argumentations made up of only a
subset of statements: propositions (declarative statements).

A proposition is a statement expressing a concept that
can be either true or false.

Example
▶ Socrates is a man
▶ Two and two makes four
▶ If the Earth had been flat, then Columbus would have not

reached America
A counterexample: Read that book!
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Simple and complex propositions

A proposition is:
▶ simple, if it does not contain simpler propositions
▶ complex, if it is made up of simpler propositions connected

by logical connectives

Example
Simple propositions:
▶ Socrates is a man
▶ Two and two makes four

Complex propositions:
▶ A tennis match can be won or lost
▶ If the Earth had been flat, then Columbus would have not

reached America
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Argumentations

How to determine whether a proposition is true or false?
This is a philosophical question.
Logic does not address this question: it only analyzes the
structure of an argumentation.

Example
All men are mortal; Socrates is a man;
then, Socrates is mortal.

Informally, the structure of this argumentation is:

all P are Q; x is P; then x is Q.

Its correctness depends only on its structure, whatever P, Q and x
mean, that is, regardless of whether the corresponding
propositions “all P are Q”, “x is P” and “x is Q” are true or false.
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Formal languages

Logic provides formal languages for representing (the structure
of) propositions, in the form of sentences.
A formal language is defined by a syntax and a semantics:
▶ syntax (grammar): rules that define what sentences are

“well-formed”, i.e., sentences which a meaning can be
attributed to

▶ semantics: rules that define the meaning of well-formed
sentences

Examples of formal languages:
▶ arithmetic: propositions about numbers
▶ programming languages: instructions to be executed by a

computer (for imperative languages like C)
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Natural vs logical (formal) languages

In natural languages:
▶ syntax is not rigorously defined
▶ semantics defines the “content” of a statement, i.e., “what it

refers to in the real world”

Example (syntax)
▶ The book is on the table: syntactically correct statement,

with a clear semantics
▶ Book the on is table the: syntactically incorrect statement, no

meaning can be attributed to it
▶ Colorless green ideas sleep furiously :1 syntactically correct,

but what does it mean?

1N. Chomsky, Syntactic Structures, 1957
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Natural vs logical (formal) languages

Logical languages:
▶ syntax: formally defined
▶ semantics: rules that define the truth value of each

well-formed sentence with respect to each possible model,
i.e., a possible “world” represented by that sentence

Example (arithmetic)
▶ Syntax: x + y = 4 is a well-formed sentence, x4y+ = is not
▶ Model: the symbol ‘4’ represents the natural number four, ‘x ’

and ‘y ’ any pair of natural numbers, ‘+’ the sum operator,
etc.

▶ Semantics: x + y = 4 is true for x = 1 and y = 3, for x = 2
and y = 2, etc.
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Logical entailment

Logical reasoning is based on the relation of logical entailment
between sentences, that defines when a sentence logically follows
from another one:

a sentence α entails a sentence β, if and only if, in every
model in which α is true, also β is true. In symbols:

α |= β

Example (from arithmetic)

x + y = 4 |= x = 4− y ,

because in every model (i.e., for any assignment of numbers to x
and y) in which x + y = 4 is true, also x = 4− y is true.
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Logical inference

Logical inference: the process of deriving conclusions from
premises
Inference algorithm: a procedure that derives sentences
(conclusions) from other sentences (premises), in a given formal
language

Formally, the fact that an inference algorithm A derives a sentence
α from a set of sentences (“knowledge base”) KB is written as:

KB ⊢A α
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Properties of inference algorithms

Soundness (truth-preservation): if an inference algorithm derives
only sentences entailed by the premises, i.e.:

if KB ⊢A α, then KB |= α

Completeness: if an inference algorithm derives all the sentences
entailed by the premises, i.e.:

if KB |= α, then KB ⊢A α

A sound algorithm derives conclusions that are guaranteed to be
true in any world in which the premises are true.
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Properties of inference algorithms

Inference algorithms operate only at the syntactic level:
▶ sentences are physical configurations of an agent (e.g., bits in

registers)
▶ inference algorithms construct new physical configurations from

previous ones
▶ logical reasoning should ensure that new configurations constructed

by inference algorithms represent aspects of the world that actually
follow from the ones represented by starting configurations

88 Chapter 7. Logical Agents
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Applications of inference algorithms
In AI inference is used to answer two main kinds of questions:
▶ does a given conclusion α logically follows from the agent’s

knowledge KB? (i.e., KB |= α ?)
▶ what are all the conclusions that logically follow from the

agent’s knowledge? (i.e., find all α’s such that KB |= α)

Example (the wumpus world)
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Figure 7.3 FILES: figures/wumpus-seq01.eps (Tue Nov 3 16:24:10 2009). The
first step taken by the agent in the wumpus world. (a) The initial situation, af-
ter percept [None ,None,None, None,None]. (b) After one move, with percept
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▶ does a breeze in room (2,1)
entail the presence of a pit in
room (2,2)?

▶ what conclusions can be
derived about the presence of
pits and of the wumpus in
each room, from the current
knowledge?
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Inference algorithms: model checking

The definition of entailment can be directly applied to construct a
simple inference algorithm, named Model checking:
Given a set of premises, KB, and a sentence α, enumerate all
possible models and check whether α is true in every model in
which KB is true.

Example (arithmetic)
▶ KB : {x + y = 4}
▶ α : y = 4− x

Is the following inference correct?

{x + y = 4} ⊢ y = 4− x

Model checking: enumerate all possible pairs of numbers x , y ,
and check whether y = 4− x is true whenever x + y = 4 is.
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The issue of grounding
A knowledge base KB (i.e., a set of sentences that the agents considers
true) is just “syntax” (a physical configuration of the agent):
▶ what is the connection between a KB and the real world?
▶ how does one know that sentences in the KB are true in the real

world?

This is the same philosophical question met before. For humans:
▶ a set of beliefs (set of statements considered true) is a physical

configuration of our brain
▶ how do we know that our beliefs are true in the real world?

A simple answer can be given for agents (e.g., computer programs or
robots): the connection is created by
▶ sensors, e.g.: perceiving a breeze in the wumpus world
▶ learning, e.g., when a breeze is perceived, there is a pit in some

adjacent room

Of course, both perception and learning are fallible.
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Architecture of knowledge-based systems revisited

Knowledge
base

Reasoning
module
(Inference
engine)

Sensors
update

Actuators
actions

update

update

Environment

If logical languages are used:
▶ knowledge base: a set of sentences in a given logical language
▶ inference engine: an inference algorithm for the same language

Focus of this course: propositional and predicate logic for knowledge
representation, inference algorithms for propositional logic.
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Logical languages

Propositional logic
▶ the simplest logical language
▶ an extension of Boolean algebra (G. Boole, 1815–64)

Predicate (or first-order) logic
▶ a more expressive and concise extension of propositional logic
▶ seminal work: G. Frege (1848–1925)
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Propositional Logic
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Syntax

▶ Atomic sentences
– either a propositional symbol that denotes a given

proposition (usually written in capitals), e.g.: P, Q, ...
– or a propositional symbol with fixed meaning: True and False

▶ Complex sentences consist of atomic or (recursively)
complex sentences connected by logical connectives
(corresponding to natural language connectives like and, or,
not, etc.)

▶ Logical connectives (only the commonly used ones are
shown – different notations exist):
∧ (and)
∨ (or)
¬ (not)
⇒ (implication / if. . . then. . . )
⇔ (biconditional / logical equivalence – if and only if)
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Syntax

A formal grammar in Backus-Naur Form (BNF):

Sentence → AtomicSentence | ComplexSentence
AtomicSentence → True | False | Symbol

Symbol → P | Q | R | . . .
ComplexSentence → ¬Sentence

| ( Sentence ∧ Sentence )
| ( Sentence ∨ Sentence )
| ( Sentence ⇒ Sentence )
| ( Sentence ⇔ Sentence )
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Semantics

Semantics of propositional logic:
▶ model of a sentence: a possible assignment of truth values to

all propositional symbols that appear in it
▶ meaning of a sentence: its truth value with respect to a

particular model

Example
The sentence P ∧ Q ⇒ R has 23 = 8 possible models.
For instance, one model is {P = True, Q = False, R = True}.

Note: models are abstract mathematical objects with no unique
connection to the real world (e.g., P may stand for any proposition
in natural language).
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Semantics

▶ Atomic sentences:
– True is true in every model
– False is false in every model
– the truth value of every propositional symbol (atomic

sentence) must be specified in the model
▶ Complex sentences:

their truth value is recursively determined as a function of
– the truth value of the simpler sentences they are made up of
– the truth tables of the logical connectives they contain
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Truth tables of commonly used connectives

The semantics of logical connectives is defined by their truth tables:

P Q ¬P P ∧ Q P ∨ Q P ⇒ Q P ⇔ Q
false false true false false true true
false true true false true true false
true false false false true false false
true true false true true true true

Note: P ⇒ Q reads as “P implies Q, or “if P then Q”.
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Example

Determining the truth value of ¬P ∧ (Q ∨R) in all possible models,
i.e., for all possible assignment of truth values to P, Q and R:

P Q R (Q ∨ R) ¬P ∧ (Q ∨ R)
false false false false false
false false true true true
false true false true true
false true true true true
true false false false false
true false true true false
true true false true false
true true true true false



39

Logical connectives and natural language

The truth tables of the connectives ∧, ∨ and ¬ agree with our intuition
about the words “and”, “or” and “not”.
However, they do not capture all the nuances of such terms.

Example
▶ He felt down and broke his leg

Here “and” includes temporal and causal relations, that are not
represented by ∧: whereas P ∧Q ≡ Q ∧P, the proposition He broke
his leg and felt down has a different meaning than the one above

▶ A tennis match can be won or lost
This proposition cannot be represented as P ∨ Q since in this case
“or” has a disjunctive meaning (a tennis match cannot be both
won and lost), corresponding to the exclusive OR operator ⊕ of
Boolean algebra, whereas ∨ has a conjunctive meaning
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Logical connectives and natural language

The truth table of the implication
may not seem in agreement with
the intuitive understanding of “P
implies Q¡¡, or “if P then Q”.

P Q P ⇒ Q
false false true
false true true
true false false
true true true

It can be understood as representing the concept of “sufficient but not
necessary condition”, i.e.:

P is a sufficient but not necessary condition for Q to be true

In other words, the sentence P ⇒ Q represents a proposition of the form:
if P is true, then I am claiming that also Q is true; otherwise, I
am making no claim

In both cases, the only way for P ⇒ Q to be false is when P is true and
Q is false.
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Logical connectives and natural language
Also the implication connective does not represent all the nuances of the
word “implies”.

Example
▶ The number four is even implies Tokyo is the capital of Japan

One may consider this proposition as false, although both the
antecedent and consequent are true, since in this case “implies”
includes a relation of causation or relevance. However, if it is
translated as P ⇒ Q, it is true according to the truth table of the
implication connective, since this connective does not represent
causation or relevance

▶ The number five is even implies Sam is smart
Also this proposition may be considered as false since there is no
relation of causation or relevance between antecedent and
consequent, regardless of whether Sam is smart or not. However, if
represented as P ⇒ Q, since P is false, also this proposition is true,
regardless of the truth value of Q
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Exercise

1. Define a set of propositional symbols to represent the wumpus
world: the position of the agent, the wumpus, pits, etc.

2. Define the model corresponding to the configuration below

3. Define the part of the initial agent’s KB corresponding to its
knowledge about the cave configuration in the figure below

4. Write a sentence for the propositions:

(a) If no breeze is perceived in
room (1,1), then there is no
pit in room (1,2)

(b) If the wumpus is in room
(3,1), there is a stench in
rooms (2,1), (4,1) and (3,2)
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Figure 7.2 FILES: figures/wumpus-world.eps (Tue Nov 3 16:24:13 2009). A typical wumpus
world. The agent is in the bottom left corner, facing right.
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Solution of exercise 1

A possible choice of propositional symbols:
▶ A1,1 (“the agent is in room (1,1)”), A1,2, . . . , A4,4
▶ W1,1 (“the wumpus is in room (1,1)”), W1,2, . . . , W4,4
▶ P1,1 (“there is a pit in room (1,1)”), P1,2, . . . , P4,4
▶ G1,1 (“the gold is in room (1,1)”), G1,2, . . . , G4,4
▶ B1,1 (“there is a breeze in room (1,1)”), B1,2, . . . , B4,4
▶ S1,1 (“there is stench in room (1,1)”), S1,2, . . . , S4,4
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Solution of exercise 2

Model corresponding to the
configuration on the right:
▶ A1,1 is true;

A1,2, A1,3,. . . are false
▶ W3,1 is true;

W1,1, W1,2, . . . are false
▶ P1,3, P3,3, P4,4 are true;

P1,1, P1,2, . . . are false
▶ G3,2 is true;

G1,1, G1,2, . . . are false
▶ B1,2, B1,4, . . . are true;

B1,1, B1,3, . . . are false
▶ S2,1, S3,2, B4,1 are true;

S1,1, S1,2, . . . are false
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Solution of exercise 3

What the agent knows in the starting configuration:
▶ I am in room (1,1) (starting position of the game)
▶ there is no pit nor the wumpus in room (1,1)
▶ there is no gold in room (1,1)
▶ I do not perceive a breeze nor a stench in room (1,1)

The corresponding agent’s KB in propositional logic (the set of
sentences the agent believes to be true):
▶ A1,1, ¬A1,2, ¬A1,3, . . . , ¬A4,4 (16 sentences)
▶ ¬W1,1, ¬P1,1
▶ ¬G1,1
▶ ¬B1,1, ¬S1,1
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Solution of exercise 4(a)

If no breeze is perceived in room (1,1), then there is no pit in room
(1,2)

It is easy to see that the absence of breeze in a room is a sufficient
condition for the absence of a pit in any adjacent room. It is
however not a necessary condition, since, even if a breeze is
present, e.g., in room (1,1), it may be due to a pit in room (2,1),
whereas room (1,2) can still contain no pit.

The above proposition can therefore be correctly represented by an
implication:

¬B1,1 ⇒ ¬P1,2
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Solution of exercise 4(b)
If the wumpus is in room (3,1) then there is a stench in rooms (2,1),
(4,1) and (3,2)

One may be tempted to use an implication:

W3,1 ⇒ (S2,1 ∧ S4,1 ∧ S3,2)

However the above sentence is true in the wumpus world, but incomple-
te. Since there is only one wumpus, its presence in room (3,1) is also a
necessary condition for a stench to be present in the neighboring rooms.
In other words, the previous sentence does not rule out models in which
W3,1 is false and S2,1 ∧ S4,1 ∧ S3,2 is true, which would violate the rules
of the wumpus world. Indeed, the opposite is also true:

(S2,1 ∧ S4,1 ∧ S3,2)⇒W3,1

The correct representation of the above statement is therefore:

W3,1 ⇔ (S2,1 ∧ S4,1 ∧ S3,2)
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Inference in Propositional Logic
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The Model checking inference algorithm

Goal of logical inference: given a KB and a sentence α, deciding
whether KB |= α.

A simple inference algorithm: model checking (see above).

Application to propositional logic:
▶ enumerate all possible models for the sentences KB ∪ {α}
▶ check whether α is true in every model in which KB is true

Implementation: truth tables.
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Model checking: an example

In the initial configuration of the wumpus game shown in the figure
below, the agent’s KB includes:

(a) ¬B1,1 (current percept)

(b) ¬B1,1 ⇒ ¬P1,2 ∧ ¬P2,1
(one of the rules of the game)
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The agent can be interested in knowing whether room (1, 2) does not
contains any pit, i.e., whether KB |= ¬P1,2, where (in this example):

KB = { ¬B1,1 ⇒ ¬P1,2 ∧ ¬P2,1, ¬B1,1 }

(cont.)
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Model checking: an example

Applying model checking consists first of building the truth table of all
the sentences in the KB and of the sentence to prove. The sentences
involved in this example contain three different propositional symbols:
B1,1, P1,2 and P2,1, therefore their truth table contains 23 = 8 rows:

Prop. symbols Premises Conclusion
B1,1 P1,2 P2,1 ¬B1,1 ⇒ ¬P1,2 ∧ ¬P2,1 ¬B1,1 ¬P1,2
false false false true true true
false false true false true true
false true false false true false
false true true false true false
true false false true false true
true false true true false true
true true false true false false
true true true true false false

(cont.)
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Model checking: an example

Next, only the rows in which all the premises are true have to be
considered. In this example there is only one such row:

Prop. symbols Premises Conclusion
B1,1 P1,2 P2,1 ¬B1,1 ⇒ ¬P1,2 ∧ ¬P2,1 ¬B1,1 ¬P1,2
false false false true true true
false false true false true true
false true false false true false
false true true false true false
true false false true false true
true false true true false true
true true false true false false
true true true true false false

The conclusion turns out to be true in all the rows in which all the
premises are true, therefore it logically follows from the premises.
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Model checking: another example

Determine whether {P ∨ Q, P ⇒ R, Q ⇒ R} |= P ∨ R, using
model checking.

Propositional symbols Premises Conclusion
P Q R P ∨ Q P ⇒ R Q ⇒ R P ∨ R

false false false false true true false
false false true false true true true
false true false true true false false
false true true true true true true
true false false true false true true
true false true true true true true
true true false true false false true
true true true true true true true

The answer is yes, because the conclusion is true in every model in
which the premises are true (grey rows).
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The Model checking inference algorithm

Properties of Model checking:
▶ soundness: yes, since it directly implements the definition of

entailment
▶ completeness: yes, since it works for any (finite) KB and any

α, and the corresponding set of models is finite
▶ computational complexity: O(2n), where n is the number of

propositional symbols appearing in KB and α

The drawback of model checking is its exponential computational
complexity, which makes it infeasible when the number of
propositional symbols is high.

Example
In the exercise about the wumpus world, 96 propositional symbols
have been introduced: the corresponding truth table is made up of
296 ≈ 1028 rows.
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Inference rules

To avoid the exponential computational complexity of model
checking, practical inference algorithms based on inference rules
have been devised.

An inference rule represents a standard pattern of inference: it
implements a simple reasoning step whose soundness can be
easily proven, that can be applied to a set of premises having a
specific structure to derive a conclusion.

Inference rules are represented as follows:

premises
conclusion
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Examples of inference rules

In the following, α and β denote any propositional sentences.

And Elimination α1∧α2
αi

, i = 1, 2

And Introduction α1,α2
α1∧α2

Or Introduction α1
α1∨α2

(α2 can be any sentence)

First De Morgan’s law ¬(α1∧α2)
¬α1∨¬α2

Second De Morgan’s law ¬(α1∨α2)
¬α1 ∧ ¬α2

Double Negation ¬(¬α)
α

Modus Ponens α⇒β, α
β

The first five rules above easily generalize to any set of sentences
α1, . . . , αn.
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Soundness of inference rules

Since inference rules usually involve a few sentences, their
soundness can be easily proven using model checking.

An example: Modus Ponens

premise conclusion premise
α β α⇒ β

false false true
false true true
true false false
true true true
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An example
In the initial configuration of the wumpus game shown in the figure
below, the agent’s KB includes:

(a) ¬B1,1 (current percept)

(b) ¬B1,1 ⇒ ¬P1,2 ∧ ¬P2,1
(one of the rules of the game)
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The agent can be interested in knowing whether room (1, 2) does not
contains any pit, i.e., whether KB |= ¬P1,2.
The proof can be carried out using the above inference rules, e.g.:
▶ applying Modus Ponens to (a) and (b): ¬P1,2 ∧ ¬P2,1

▶ applying And elimination to the new sentence above: ¬P1,2

The agent can conclude that room (1, 2) does not contain any pit.
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Inference algorithms based on inference rules

Given a set of premises KB and a conclusion of interest α, the goal
of an inference algorithm A is to find a proof KB ⊢A α (if any),
i.e., a sequence of applications of inference rules that leads from
KB to α.

A basic inference algorithm based on a set of inference rules I:

repeat
apply in all possible ways the rules in I to the sentences of KB
add to KB each derived sentence, if not already present in it

until some sentences not yet present in KB have been derived,
and α is not present in KB

If α is present in the final KB, then KB ⊢A α, and if A is sound,
one can conclude that KB |= α.
What about the case when α is not present in the final KB? Can
one conclude that KB ⊭ α? In other words, is A complete?
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Properties of inference algorithms

Three main issues:
▶ is a given inference algorithm sound (correct)?
▶ is it complete?
▶ what is its computational complexity?

It is not difficult to see that, if the considered inference rules are
sound, so is an inference algorithm based on them.

Completeness is more difficult to prove: it depends on the set of
available inference rules, and on the ways in which they are applied.
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Properties of inference algorithms

What about computational complexity?

There can be a huge number of ways to apply the inference rules
at hand to sentences of KB, then to sentences of the updated
KB, and so on, leading to a very high computational complexity.

Efficiency can be improved in different ways:
▶ ignoring sentences of KB irrelevant to the conclusion α

▶ using few inference rules (even only one), without
compromising completeness
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Complete inference algorithms for propositional logic

Forward and Backward Chaining are
▶ complete inference algorithms, limited to

– premises (KB’s) in the form of Horn clauses
– conclusions in the form of atomic, non-negated sentences

▶ based on a single inference rule (Modus Ponens)

A family of complete inference algorithms, named Resolution,
exists for the whole propositional logic (i.e., applicable to premises
and conclusions in any form), which is also based on a single,
homonymous inference rule.

Resolution algorithms require that the premises and conclusion are
written in conjunctive normal form, which is possible for any
propositional sentence.
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Conjunctive normal form

A literal is a propositional symbol, possibly negated; e.g., P and
¬Q are literals.
A clause is a sentence made up of either a single literal or a
disjunction of two or more literals, e.g.:
▶ ¬Q
▶ P ∨ Q ∨ ¬R

A sentence is said to be in conjunctive normal form (CNF) if it is
made up of either a single clause, or a conjunction of two or more
clauses, e.g.:
▶ ¬Q
▶ P ∨ Q ∨ ¬R
▶ (¬R ∨ S) ∧ P ∧ (Q ∨ T ∨ ¬Z )



64

Conversion into conjunctive normal form

Any propositional sentence can be rewritten in CNF through the
following steps:

1. eliminating biconditionals, through the equivalence:
(P ⇔ Q) ≡ ((P ⇒ Q) ∧ (Q ⇒ P))

2. eliminating implications, through the equivalence:
(P ⇒ Q) ≡ (¬P ∨ Q)

3. “moving negations inwards” up to individual propositional symbols,
using the following equivalences:

– De Morgan’s laws:
¬(P ∨ Q) ≡ (¬P ∧ ¬Q)
¬(P ∧ Q) ≡ (¬P ∨ ¬Q)

– double-negation elimination: (¬(¬P)) ≡ P
4. distributing ∨ over ∧, using the equivalence:

((P ∧ Q) ∨ R) ≡ ((P ∨ R) ∧ (Q ∨ R))

The correctness of the above equivalences is easy to prove using truth
tables. Note that each step produces a clause.
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Conversion into conjunctive normal form: an example

Consider the following sentence encoding one of the rules of the
Wumpus game:

B1,1 ⇔ (P1,2 ∨ P2,1)

It can be rewritten in CNF as follows:
1. eliminating the biconditional:

(B1,1 ⇒ (P1,2 ∨ P2,1)) ∧ ((P1,2 ∨ P2,1)⇒ B1,1)
2. eliminating the implication:

(¬B1,1 ∨ P1,2 ∨ P2,1) ∧ (¬(P1,2 ∨ P2,1) ∨ B1,1)
3. moving negations inwards (using one of De Morgan’s laws):

(¬B1,1 ∨ P1,2 ∨ P2,1) ∧ ((¬P1,2 ∧ ¬P2,1) ∨ B1,1)
4. distributing ∨ over ∧:

(¬B1,1 ∨ P1,2 ∨ P2,1) ∧ (¬P1,2 ∨ B1,1) ∧ (¬P2,1 ∨ B1,1)
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The resolution inference rule

Consider two clauses (αi ’s and αj ’s denote literals):

α1 ∨ α2 ∨ . . . ∨ αm

β1 ∨ β2 ∨ . . . ∨ βn

with n, m ≥ 1, and assume they contain a pair of complementary
literals αp and αq, say, αp = P and βq = ¬P.

The resolution inference rule derives a new clause made up of the
disjunction of all the literals of the premises, except for αp and αq:

α1 ∨ α2 ∨ . . . ∨ αm, β1 ∨ β2 ∨ . . . ∨ βn
α1 ∨ . . . ∨ αp−1 ∨ αp+1 ∨ . . . ∨ αm ∨ β1 ∨ . . . ∨ βq−1 ∨ βq+1 ∨ . . . ∨ βn

Its soundness can be formally proven using truth tables.
Intuitively, since one among αp and αq must be false, the disjunction of
the remaining literals of the corresponding clause must be true.
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The resolution inference rule

An example:
P ∨ ¬Q ∨ ¬R, R ∨ ¬S

P ∨ ¬Q ∨ ¬S

As a particular case, two clauses made up of single, complemen-
tary literals, such as P and ¬P, are contradictory, i.e., cannot be
simultaneously true. Applying the resolution rule to such clauses
leads to an “empty” clause, denoted by [ ]:

P, ¬P
[ ]

Note that two contradictory clauses cannot be part of the
premises (or KB) of any correct argumentation.
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Proof by refutation

A sentence is satisfiable if it is true in at least one model. For
instance, in propositional logic both P and Q ∨ ¬R are satisfiable,
whereas P ∧¬P is unsatisfiable. Unsatisfiable sentences are said to
be contradictory.

Remember that a sentence α is said to logically follow from a set
of premises KB (KB |= α), if it cannot be false when KB is true.
Viewing KB as a single, equivalent sentence made up of the
conjunction of all its components, this can be restated as:

KB |= α if and only if KB ∧ ¬α is unsatisfiable
(i.e., contradictory).

Proving that KB |= α by showing that KB ∧ ¬α is unsatisfiable
(contradictory) corresponds to the mathematical technique of
proof by refutation or contradiction (reductio ad absurdum).



69

Inference algorithms based on the resolution rule

The resolution rule, coupled with the proof by refutation technique,
leads to refutation-complete algorithms for propositional logic:
▶ for any given KB and α, they can determine in a finite

number of steps whether KB |= α or KB ⊭ α

▶ however, they cannot derive all the sentences that logically
follow from a given set of premises

To this aim, it is necessary to use complete search strategies to
carry out the proof.
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A resolution inference algorithm

function Resolution (KB, α) returns true or false
clauses ← the set of clauses in CNF form of KB ∪ {¬α}
new ← ∅
loop do

for each distinct αi , αj in clauses do
resolvents ← resolve(αi , αj)
if resolvents contains [ ] then return true
new ← new ∪ resolvents

if new ⊆ clauses then return false
clauses ← clauses ∪ new

resolve denotes a function that applies the resolution rule to all
pairs of complementary literals (if any) of a pair of clauses.
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Resolution inference algorithms: computational complexity

Inference algorithms based on the resolution rule and on the proof
by refutation technique check whether a set of sentences is
satisfiable.

Checking satisfiability is known to be a NP-complete problem –
informally, its computational complexity is very high: it requires up
to an exponential number of steps in the size of the KB.

Efficiency can be improved through several strategies, such as
discarding derived clauses containing complementary literals, which
are true by definition, e.g.: P ∨ ¬R ∨Q ∨ ¬Q.
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Resolution inference algorithms: an example

Consider the same sentence as in the previous example, encoding
one of the rules of the Wumpus game:

B1,1 ⇔ (P1,2 ∨ P2,1)

Assuming the agent is in the
starting square, the fact that it
does not perceive any breeze (as
in the figure on the right) can
be expressed as ¬B1,1.
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To choose the next action, among other things the agent can be
interested in knowing whether room (1, 2) contains no pit, i.e.,
whether ¬P1,2 is true.
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Resolution inference algorithms: an example

For the sake of simplicity, consider a KB made up only of the two
following sentences:

KB = {B1,1 ⇔ (P1,2 ∨ P2,1), ¬B1,1}

The above resolution algorithm can now be applied to prove whether
KB |= ¬P1,2. Preliminary steps:
▶ converting into CNF the first sentence of KB (as shown in a

previous example):

(¬B1,1 ∨ P1,2 ∨ P2,1) ∧ (¬P1,2 ∨ B1,1) ∧ (¬P2,1 ∨ B1,1)

▶ adding to KB the negation of the sentence to be proven, and
separating the resulting conjuncts, which leads to the clauses:

{¬B1,1 ∨ P1,2 ∨ P2,1, ¬P1,2 ∨ B1,1, ¬P2,1 ∨ B1,1, ¬B1,1, P1,2}
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Resolution inference algorithms: an example

What follows is a possible proof using the resolution algorithm.
Clauses 1–5 are the initial ones (i.e., coming from KB ∪ P1,2).
Clauses 6–12 are all the ones derived by resolving pairs of initial clauses.

1. ¬B1,1 ∨ P1,2 ∨ P2,1

2. ¬P1,2 ∨ B1,1

3. ¬P2,1 ∨ B1,1

4. ¬B1,1

5. P1,2

6. ¬B1,1 ∨ P1,2 ∨ B1,1 (1, 3)

7. P1,2 ∨ P2,1 ∨ ¬P2,1 (1, 3)

8. ¬B1,1 ∨ P2,1 ∨ B1,1 (1, 2)

9. P1,2 ∨ P2,1 ∨ ¬P1,2 (1, 2)

10. ¬P2,1 (3, 4)

11. ¬P1,2 (2, 4)

12. [ ] (5, 11)

A contradiction appears in clause 12, which proves that room (1, 2) does
not contain any pit.
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Resolution inference algorithms: an example

Note that some resolution steps are not useful to complete a proof.

For instance, clauses 6–9 contain complementary literals, e.g.:
6. ¬B1,1 ∨ P1,2 ∨ B1,1 (1, 3)

This means that each of such clauses is trivially true: therefore
they can be discarded during a proof, which reduces computational
complexity.
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Horn clauses
In many domains of practical interest, the whole KB can be
expressed in the form of “if... then...” propositions that can be
encoded as Horn clauses, i.e., implications where:
▶ the antecedent is a conjunction (∧) of atomic sentences

(non-negated propositional symbols)
▶ the consequent is a single atomic sentence

P1 ∧ . . . ∧ Pn ⇒ Q

For instance, S2,1 ∧ S4,1 ∧ S3,2 ⇒W3,1 is a Horn clause.

As particular cases, also atomic sentences (i.e., propositional
symbols) and their negation can be rewritten as Horn clauses.
Indeed, since (P ⇒ Q) ≡ (¬P ∨ Q):

P ≡ ¬True ∨ P ≡ True ⇒ P

¬P ≡ ¬P ∨ False ≡ P ⇒ False
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Forward and Backward Chaining inference algorithms

In the particular case when:
▶ the KB can be expressed as a set of Horn clauses
▶ the conclusion is an atomic and non-negated sentence (i.e., a

particular case of Horn clause)
two inference algorithms exist, named Forward and Backward
Chaining, exhibiting the following characteristics:
▶ they use a single inference rule, as Resolution algorithms, in

this case Modus Ponens
▶ they are complete (in particular, FC allows to derive all

sentences that logically follow from a given KB, which
Resolution algorithms cannot do)

▶ they exhibit a computational complexity linear in the size of
the KB
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Forward Chaining

Given a KB made up by Horn clauses, Forward Chaining (FC)
derives all the entailed atomic (non-negated) sentences:

function Forward-chaining (KB)
repeat

apply MP in all possible ways to sentences in KB
add to KB the derived sentences not already present (if any)

until some sentences not yet present in KB have been derived
return KB
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Forward Chaining

FC is an example of data-driven reasoning: it starts from known
data, and derives their consequences.

For instance, in the wumpus game FC could be used to update
the agent’s knowledge about the environment (the presence of pits
in each room, etc.), based on the new percepts after each move.

The inference engine of expert systems is inspired by the FC
inference algorithm.
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Forward Chaining: an example

Consider the KB shown below, made up of Horn clauses:

1. P ⇒ Q

2. L ∧M ⇒ P

3. B ∧ L⇒ M

4. A ∧ P ⇒ L

5. A ∧ B ⇒ L

6. A

7. B

(cont.)
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Forward Chaining: an example

By applying FC one obtains:

8. the only implication whose premises (individual propositional
symbols) are in the KB is 5: MP derives L and adds it to the
current KB

9. now the premises of 3 are all true: MP derives M and adds it to the
KB

10. the premises of 2 have become all true: MP derives P and adds it
to the KB

11. the premises of 1 and 4 are now all true: MP derives Q form 1 and
adds it to the KB, but disregards 4 since its consequent (L) is
already present in the KB

12. no new sentences can be derived from 1–11: FC ends and returns
the updated KB containing the original sentences 1–7 and the ones
derived in the above steps: {L, M, P, Q}
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Backward Chaining

For a given KB made up of Horn clauses, and a given atomic,
non-negated sentence α, FC can be used to prove whether or not
KB |= α. To this aim, one has to check whether α is present or
not among the derived sentences.

However, Backward Chaining (BC) is more effective for this task.
BC recursively applies MP “backwards”. It exploits the fact that
KB |= α, if and only if:
▶ either α ∈ KB (this terminates recursion)
▶ or KB contains some implication β1, . . . , βn ⇒ α,

and (recursively) KB |= β1, . . . , KB |= βn

The sentence α to be proven is also called query.
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Backward Chaining

function Backward-chaining (KB, α)
if α ∈ KB then return True
let B be the set of sentences of KB having α as the consequent
for each β ∈ B

let β1, β2, . . . be the propositional symbols in the antecedent of β
if Backward-Chaining (KB, βi) = True for all βi ’s
then return True

return False
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Backward Chaining

BC is a form of goal-directed reasoning.

For instance, in the wumpus game it could be used to answer
queries like: given the current agent’s knowledge, is moving
upward the best action?

The computational complexity of BC is even lower than that of
FC, since BC focuses only on relevant sentences.

The Prolog inductive logic programming language is based on the
predicate logic version of the BC inference algorithm.
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Backward Chaining: an example

Consider a KB representing the rules followed by a financial institution
for deciding whether to grant a loan to an individual. The following
propositional symbols are used:
▶ OK : the loan should be approved
▶ COLLAT : the collateral for the loan is satisfactory
▶ PYMT : the applicant is able to repay the loan
▶ REP: the applicant has a good financial reputation
▶ APP: the appraisal on the collateral is sufficiently greater than the

loan amount
▶ RATING : the applicant has a good credit rating
▶ INC : the applicant has a good, steady income
▶ BAL: the applicant has an excellent balance sheet
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Backward Chaining: an example

The KB is made up of the five rules (implications) on the left, and of the
data about a specific applicant encoded by the four sentences on the
right (all of them are Horn clauses):

1. COLLAT ∧ PYMT ∧ REP ⇒
OK

2. APP ⇒ COLLAT
3. RATING ⇒ REP
4. INC ⇒ PYMT
5. BAL ∧ REP ⇒ OK

6. APP

7. RATING

8. INC

9. ¬BAL

Should the loan be approved for this specific applicant?
This amounts to prove whether OK is entailed by the KB, i.e., whether:

KB |= OK
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Backward Chaining: an example

The BC recursive proof KB ⊢BC OK can be conveniently
represented as an AND-OR graph, a tree-like graph in which:
▶ multiple links joined by an arc indicate a conjunction:

every linked proposition must be proven to prove the
proposition in the parent node

▶ multiple links without an arc indicate a disjunction:
any linked proposition can be proven to prove the proposition
in the parent node



88

Backward Chaining: an example

The first call Backward-chaining(KB, OK ) is represented by the tree
root, corresponding to the sentence to be proven:

OK

APP

INC

OK

REPBAL

OK

REPBAL

RATING

OK

REPBAL

RATING

OK

REPBAL

RATING

COLLAT PYMT REP

OK

REPBAL

RATING

COLLAT PYMT REP

OK

REPBAL

RATING

APP

COLLAT PYMT REP

OK

REPBAL

RATING

Since OK /∈ KB, implications having OK as the consequent are searched
for. There are two such sentences: 1 and 5. The BC procedure tries to
prove all the antecedents of at least one of them. Considering first 5, a
recursive call to Backward-chaining is made for each of its two
antecedents, represented by an AND-link:

OK

APP

INC

OK

REPBAL

OK

REPBAL

RATING

OK

REPBAL

RATING

OK

REPBAL

RATING

COLLAT PYMT REP

OK

REPBAL

RATING

COLLAT PYMT REP

OK

REPBAL

RATING

APP

COLLAT PYMT REP

OK

REPBAL

RATING
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Backward Chaining: an example
Consider the call Backward-chaining(KB, REP): since REP /∈ KB,
and the only implication having REP as the consequent is 3, another
recursive call is made for the antecedent of 3:

OK

APP

INC

OK

REPBAL

OK

REPBAL

RATING

OK

REPBAL

RATING

OK

REPBAL

RATING

COLLAT PYMT REP

OK

REPBAL

RATING

COLLAT PYMT REP

OK

REPBAL

RATING

APP

COLLAT PYMT REP

OK

REPBAL

RATING

The call Backward-chaining(KB, RATING) returns True, since
RATING ∈ KB, and thus also the call Backward-Chaining(KB,
REP) returns True:

OK

APP

INC

OK

REPBAL

OK

REPBAL

RATING

OK

REPBAL

RATING

OK

REPBAL

RATING

COLLAT PYMT REP

OK

REPBAL

RATING

COLLAT PYMT REP

OK

REPBAL

RATING

APP

COLLAT PYMT REP

OK

REPBAL

RATING
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Backward Chaining: an example
However, the call Backward-chaining(KB, BAL) returns False, since
BAL /∈ KB and there are no implications having BAL as the consequent.
Therefore, the first call Backward-chaining(KB, OK ) is not able to
prove OK through this AND-link:

OK

APP

INC

OK

REPBAL

OK

REPBAL

RATING

OK

REPBAL

RATING

OK

REPBAL

RATING

COLLAT PYMT REP

OK

REPBAL

RATING

COLLAT PYMT REP

OK

REPBAL

RATING

APP

COLLAT PYMT REP

OK

REPBAL

RATING

The other sentence in the KB having OK as the consequent, 1, is now
considered, and another AND-link is generated with three recursive calls
for each of the antecedents of 1:

OK

APP

INC

OK

REPBAL

OK

REPBAL

RATING

OK

REPBAL

RATING

OK

REPBAL

RATING

COLLAT PYMT REP

OK

REPBAL

RATING

COLLAT PYMT REP

OK

REPBAL

RATING

APP

COLLAT PYMT REP

OK

REPBAL

RATING
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Backward Chaining: an example

The call Backward-chaining(KB, COLLAT ) generates in turn
another recursive call to prove the antecedent of the only implication
having COLLAT as the consequent, 2:

OK

APP

INC

OK

REPBAL

OK

REPBAL

RATING

OK

REPBAL

RATING

OK

REPBAL

RATING

COLLAT PYMT REP

OK

REPBAL

RATING

COLLAT PYMT REP

OK

REPBAL

RATING

APP

COLLAT PYMT REP

OK

REPBAL

RATING

The call Backward-chaining(KB, APP) returns True, since
APP ∈ KB, and thus also Backward-Chaining(KB, COLLAT )
returns True

OK

APP

INC

OK

REPBAL

OK

REPBAL

RATING

OK

REPBAL

RATING

OK

REPBAL

RATING

COLLAT PYMT REP

OK

REPBAL

RATING

COLLAT PYMT REP

OK

REPBAL

RATING

APP

COLLAT PYMT REP

OK

REPBAL

RATING
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Backward Chaining: an example

Similarly, the calls Backward-chaining(KB, PYMT ) and
Backward-Chaining(KB, REP) return True.

The corresponding AND-link is then proven, which finally allows the first
call Backward-chaining(KB, OK ) to return True:

APP

COLLAT PYMT REP

OK

REPBAL

RATING INC

APP

COLLAT PYMT REP

OK

REPBAL

RATING INC

APP

COLLAT PYMT REP

OK

REPBAL

RATING INC RATING

APP

COLLAT PYMT REP

OK

REPBAL

RATING INC RATING

The proof KB ⊢BC OK is then successfully completed.
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Exercise 1

Construct the agent’s initial KB for the wumpus game.

The KB should contain:
▶ the rules of the game: the agent starts in room (1,1); there is

a breeze in rooms adjacent to pits, etc.
▶ rules to decide the agent’s move at each step of the game

Note that the KB must be updated at each step of the game:
1. adding percepts in the current room (from sensors)
2. reasoning to derive new knowledge about the position of pits

and wumpus
3. reasoning to decide the next move
4. updating the agent’s position after a move
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Exercise 1

Rules of the wumpus game:
▶ the agent starts in room (1,1):

A1,1 ∧ ¬A1,2 ∧ . . . ∧ ¬A4,4
▶ there is a breeze in rooms adjacent to pits:

P1,1 ⇒ (B2,1 ∧ B1,2),
P1,2 ⇒ (B1,1 ∧ B2,2 ∧ B1,3), . . .
(one proposition in natural language, sixteen sentences in
propositional logic – one for each room)

▶ there is only one wumpus:
(W1,1 ∧ ¬W1,2 ∧ ¬W1,3 ∧ . . . ∧ ¬W4,4)∨
(¬W1,1 ∧W1,2 ∧ ¬W1,3 ∧ . . . ∧ ¬W4,4)∨ . . .
(one proposition in natural language, sixteen sentences in
propositional logic – one for each room)

▶ . . .

Often, one concise proposition in natural language needs to be
represented by many complex sentences in propositional logic.
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Exercise 1

How to update the KB to account for the change of the agent’s
position after each move? E.g., A1,1 is true in the starting
position, and becomes false after the first move:
▶ adding ¬A1,1 makes the KB contradictory, since A1,1 is still

present . . .
▶ . . . but inference rules do not allow removing sentences

Solution: using a different propositional symbol for each time
step, e.g., At

i ,j , t = 1, 2, . . .

▶ initial KB: A1
1,1, ¬A1

1,2, . . .¬A1
4,4

▶ if the agent moves to (1,2), the following sentences must be
added to the KB: ¬A2

1,1, A2
1,2, ¬A2

1,3 . . . , ¬A2
4,4; and so on

Things get complicated . . .
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Exercise 2

The following argumentation (an example of syllogism) is intuitively
correct; prove its correctness using propositional logic:
All men are mortal; Socrates is a man; then, Socrates is mortal.

Three distinct propositional symbols must be used:
P (All men are mortal), Q (Socrates is a man), R (Socrates is mortal)

Therefore:
▶ premises: {P, Q}
▶ conclusion: R

Do the premises entail the conclusion, i.e., {P, Q} |= R?

Model checking easily allows one to prove that the answer is no: in the
model {P = True, Q = True, R = False}, the premises are true but the
conclusion is false.

What’s wrong?
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Limitations of propositional logic

Main problems:
▶ limited expressive power
▶ lack of conciseness

Example (wumpus world)
Even small knowledge bases (in natural language) require a large
number of propositional symbols and sentences.

Example (syllogisms)
Inferences involving the structure of atomic sentences (e.g., All
men are mortal, . . . ) cannot be made.
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From propositional to predicate logic

The description of many domains of interest for real world applications
(e.g., mathematics, philosophy, AI) involve the following elements of
natural language:
▶ nouns denoting individuals or objects, e.g.: the wumpus, pits,

Socrates, Plato, the number four, etc.
▶ predicates denoting properties of individuals (or objects) or

relations between them, e.g.: Socrates is a man, five is prime,
four is lower than five; the sum of two and two equals four

▶ functions that indirectly denote an individual (or object) between
objects in terms of other ones, e.g.: the father of Mary, one plus
three is even

▶ facts involving some or all individuals or objects of a given set, e.g.:
all squares neighboring the wumpus are smelly; some numbers are
prime

These elements cannot be represented in propositional logic, and require
the more expressive predicate logic.
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Predicate Logic
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Models
In predicate logic a model consists of:
▶ a domain of discourse, i.e., the set of all objects or individuals

mentioned in the propositions, e.g.:
– the set of natural numbers
– a set of individuals: Socrates, Plato, . . .

▶ relations between domain elements, explicitly represented as the
set of tuples among which a relation holds, e.g.:

– being a prime number (unary relation): {1, 2, 3, 5, 7, 11, . . . }
– being greater than (binary relation): {(2,1), (3,1), . . . }
– being equal to (binary relation): {(1,1), (2,2), . . . }

(unary relations are also called properties)
▶ functions mapping tuples of domain elements to a single one, e.g.:

– plus: (1,1) → 2, (1,2) → 3, . . .
– father of: John → Mary, . . .

Note that relations and functions are defined extensionally, i.e., by
explicitly enumerating the corresponding tuples.
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Syntax

The basic elements are symbols that are used to represent domain
elements, relations and functions:
▶ constant symbols denote domain elements (objects or

individuals), e.g.: One, Two, Three, John, Mary
▶ predicate symbols denote relations, e.g.:

GreaterThan, Prime, Sum, Father
▶ function symbols denote functions, e.g.:

Plus, FatherOf
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Syntax

A formal grammar in Backus-Naur Form (BNF):

Sentence → AtomicSentence
| (Sentence Connective Sentence)
| Quantifier Variable, . . . Sentence
| ¬ Sentence

AtomicSentence → Predicate(Term,. . . )
Term → Function(Term,. . . ) | Constant | Variable

Connective → ⇒ | ∧ | ∨ | ⇔
Quantifier → ∀ | ∃
Constant → John | Mary | One | Two | . . .
Variable → a | x | s | . . .

Predicate → GreaterThan | Father | . . .
Function → Plus | FatherOf | . . .
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Semantics: interpretations

Remember that semantics defines the truth of well-formed
sentences, related to a particular model.
In predicate logic this requires an interpretation: defining which
domain elements, relations and functions are referred to by
symbols.

Examples:
▶ One, Two and Three denote the natural numbers 1, 2, 3;

John and Mary denote the individuals John and Mary
▶ GreaterThan denotes the binary relation “to be greater than”

(>) between numbers;
Father denotes the fatherhood relation between individuals

▶ Plus denotes the function mapping a pair of numbers to the
number corresponding to their sum
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Semantics: terms

Terms are logical expressions denoting domain elements.
A term can be:
▶ simple: a constant symbol, e.g.: One, Two, John
▶ complex: a function symbol applied (possibly, recursively) to

other terms, e.g.:
FatherOf (Mary)
Plus(One, Two)
Plus(One, Plus(One, One))

Note:
▶ assigning a constant symbol to every domain element is not

required (domains can be even infinite): only elements
explicitly mentioned in propositions (e.g., Socrates) should
be assigned a constant symbol

▶ a domain element can be denoted by more than one symbol
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Semantics: atomic sentences

Atomic sentences are the simplest kind of proposition: a
predicate symbol applied to a list of terms.

Examples:
▶ GreaterThan(Two, One)
▶ Prime(Two),
▶ Prime(Plus(Two, Two))
▶ Sum(One, One, Two)
▶ Father(John, Mary)
▶ Father(FatherOf (John), FatherOf (Mary))
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Semantics: atomic sentences

An atomic sentence is true, in a given model and under a given
interpretation, if the relation referred to by its predicate symbol
holds between the objects referred to by its arguments (terms)

Example
According to the above model and interpretation:
▶ GreaterThan(One, Two) is false
▶ Prime(Two) is true
▶ Prime(Plus(One, One)) is true
▶ Sum(One, One, Two) is true
▶ Father(John, Mary) is true
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Semantics: complex sentences

Complex sentences are obtained as in propositional logic, using
logical connectives.

Examples:
▶ Prime(Two) ∧ Prime(Three)
▶ ¬Sum(One, One, Two)
▶ GreaterThan(One, Two)⇒ (¬GreaterThan(Two, One))
▶ Father(John, Mary) ∨ Father(Mary , John)

Semantics (truth value) is determined as in propositional logic.
Examples: the second sentence above is false, the others are true.
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A note on predicates and functions

Although the syntax of predicate and function symbols is identical,
their role is different:
▶ functions are terms (i.e., denote domain elements), and

therefore can only appear as arguments of predicates and
(recursively) functions

▶ predicates denote propositions, and cannot appear as
arguments of predicates or functions
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Semantics: quantifiers

Quantifiers allow one to express propositions involving collections
of domain elements, without enumerating them explicitly.

Two main quantifiers are used in predicate logic:
▶ universal quantifier, e.g.:

All men are mortal
All rooms neighboring the wumpus are smelly
All even numbers that are greater than two are not prime

▶ existential quantifier, e.g.:
Some numbers are prime
Some rooms contain pits
Some men are philosophers

Quantifiers require a new kind of term: variable symbols, usually
denoted with lowercase letters.
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Semantics: universal quantifier

Example
Assume that the domain is the set of natural numbers.
All natural numbers are greater than or equal to one

∀x GreaterOrEqual(x , One)
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Semantics: universal quantifier

The semantics of a sentence ∀x α(x), where α(x) is a sentence
containing the variable x , is:

α(x) is true for each domain element in place of x

Example
If the domain is the set of natural numbers,

∀x GreaterOrEqual(x , One)

states that the following (infinite) sentences are all true:
GreaterOrEqual(One, One)
GreaterOrEqual(Two, One)
. . .
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Semantics: universal quantifier

Consider the proposition:
all even numbers greater than two are not prime

A common mistake is to represent it as:

∀x Even(x) ∧ GreaterThan(x , Two) ∧ (¬Prime(x))

The above sentence actually states that:
all numbers are even, greater than two, and are not prime

which is different from the intended meaning.
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Semantics: universal quantifier

The correct sentence can be obtained by restating the original
proposition as:

for all x, if x is even and greater than two,
then x is not prime

This proposition states a sufficient condition, and therefore can be
represented as an implication:

∀x (Even(x) ∧ GreaterThan(x , Two))⇒ (¬Prime(x))

In general, propositions where “all” refers to all the domain
elements that satisfy some condition should be represented
using an implication.
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Semantics: universal quantifier

Consider again this sentence:

∀x (Even(x) ∧ GreaterThan(x , Two))⇒ (¬Prime(x))

Claiming that it is true corresponds to claim that also sentences
like the following ones are true:

(Even(One) ∧ GreaterThan(One, Two))⇒ (¬Prime(One))

Note that the antecedent of the implication is false (the number
one is not even, nor it is greater than the number two). This is not
contradictory, since implications with false antecedents are true by
definition (see again the truth table of ⇒).
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Semantics: existential quantifier

Example
Assume that the domain is the set of natural numbers.
▶ Some numbers are prime

∃x Prime(x)

This is read as: there exists some x such that x is prime
▶ Some numbers are not greater than three, and are even

∃x ¬GreaterThan(x , Three) ∧ Even(x)
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Semantics: existential quantifier

Consider a proposition like the following:

some odd numbers are prime

A common mistake is to represent it using an implication:

∃x Odd(x)⇒ Prime(x)

The above sentence actually states that:
for some natural numbers being odd is a necessary
condition to be prime

which does not correspond to the original proposition (and is also
false).
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Semantics: existential quantifier

The sentence corresponding to the original proposition can be
obtained by restating the latter as:

there exists some x such that x is odd and x is prime
The above proposition can be represented using a conjunction:

∃x Odd(x) ∧ Prime(x)

In general, propositions stating several properties about “some”
domain element should be represented using a conjunction.
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Semantics: nested quantifiers

A sentence can contain more than one quantified variable.
If the quantifier is the same for all variables, e.g.:

∀x(∀y(∀z . . . α[x , y , z , . . .] . . .))

then the sentence can be rewritten more concisely as:

∀x , y , z . . . α[x , y , z , . . .]

For instance, in the domain of natural numbers, the proposition:
If a number is greater than another number, then also the suc-
cessor of the former is greater than the latter

can be represented by the following sentence (using the function
Successor):

∀x , y GreaterThan(x , y)⇒ GreaterThan(Successor(x), y)
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Semantics: nested quantifiers

If a sentence contains both universally and existentially quantified
variables, its meaning depends on the order of quantification.
In particular, ∀x(∃y α[x , y ]) and ∃y(∀x α[x , y ]) are not equivalent, i.e.,
they are not true under the same models.

For instance,
∀x ∃y Loves(x , y)

states that (i.e., is true under any model in which) everybody loves
somebody. Note that the domain element denoted by y can be different
for different x ’s.

Instead,
∃y ∀x Loves(x , y)

states that there is someone who is loved by everyone (now the domain
element denoted by y must be the same for all the x ’s). Therefore the
meaning of the above sentences is different, i.e., they can be true under
different sets of models.
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Semantics: connections between quantifiers

The quantifiers ∀ and ∃ are connected with each other through
negation, just like in natural language.

For instance, asserting that Every natural number is greater than
or equal to zero is the same as asserting that There does not exist
any natural number which is not greater than or equal to zero.

The two propositions above can be respectively translated into the
following, equivalent sentences, whose domain is assumed to be
the set of natural numbers:

∀x GreaterOrEqual(x , Zero)
¬ (∃x ¬GreaterOrEqual(x , Zero))
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Semantics: connections between quantifiers

In general, since ∀ is equivalent to a conjunction over all domain
elements, and ∃ is equivalent to a disjunct, they obey De Morgan’s
rules (shown below on the left, in the usual form involving two
propositional variables):

¬P ∧ ¬Q ⇔ ¬(P ∨ Q) ∀x(¬α[x ]) ⇔ ¬(∃x α[x ])
¬(P ∧ Q) ⇔ (¬P) ∨ (¬Q) ¬(∀x α[x ]) ⇔ ∃x(¬α[x ])

P ∧ Q ⇔ ¬(¬P ∨ ¬Q) ∀x α[x ] ⇔ ¬(∃x(¬α[x ]))
P ∨ Q ⇔ ¬(¬P ∨ ∧Q) ∃x α[x ] ⇔ ¬(∀x (¬α[x ]))
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Exercises

Represent the following propositions using sentences in predicate
logic, including the definition of the domain

1. All men are mortal; Socrates is a man; Socrates is mortal
2. All rooms neighboring a pit are breezy (wumpus game)
3. Peano-Russell’s axioms of arithmetic, that define natural

numbers (nonnegative integers):
P1 zero is a natural number
P2 the successor of any natural number is a natural number
P3 zero is not the successor of any natural number
P4 no two natural numbers have the same successor
P5 any property which belongs to zero, and to the successor of

every natural number which has the property, belongs to all
natural numbers
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Exercises

4. Assume that the goal is to prove that West is a criminal
(using suitable inference algorithms):

The law says that it is a crime for an American to sell
weapons to hostile countries. The country Nono, an enemy of
America, has some missiles, and all of its missiles were sold to
it by Colonel West, who is American.

Note that in a knowledge-based system the first proposition
above encodes the general knowledge about the problem at
hand (analogously to the rules of chess and of the wumpus
game), whereas the second proposition encodes a specific
problem instance (analogously to a specific configuration of a
chessboard or of the wumpus maze).
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Solution of exercise 1

Domain and symbols:
▶ domain: any set including all men
▶ constant symbols: Socrates
▶ predicate symbols: Man and Mortal , unary predicates; e.g.,

Man(Socrates) means that Socrates is a man.

The sentences are:

∀x Man(x)⇒ Mortal(x)
Man(Socrates)
Mortal(Socrates)
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Solution of exercise 2

A possible choice of domain and symbols:
▶ domain: row and column coordinates
▶ constant symbols: 1, 2, 3, 4
▶ predicate symbols:

– Pit, binary predicate; e.g., P(1, 2) means that there is a pit in
room (1,2)

– Adjacent, predicate with four terms; e.g., Adjacent(1, 1, 1, 2)
means that room (1,1) is adjacent to room (1,2)

– Breezy, binary predicate; e.g., Breezy(2, 2) means that there is
a breeze in room (2,2)
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Solution of exercise 2

The required sentence can be obtained by restating the considered
proposition as:

if a room contains a pit, then all the adjacent rooms are
breezy

Note that the latter proposition represents a sufficient condition
for all the rooms adjacent to given one to be breezy, but not a
necessary one, since the same rooms can be breezy also due to the
presence of pits in other rooms. The latter proposition can
therefore be represented as an implication:

∀x , y Pit(x , y)⇒ (∀p, q Adjacent(x , y , p, q)⇒ Breezy(p, q))
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Solution of exercise 2

One could however argue that the original proposition does not
completely represent the corresponding rule of the wumpus game,
that can be stated as follows:

a room is breezy, if and only if at least one of the adjacent
rooms contains a pit

It is easy to see that the above proposition states a necessary and
sufficient condition, which can be represented as an equivalence:

∀x , y Breezy(x , y)⇔ (∃p, q Adjacent(x , y , p, q) ∧ Pit(p, q))
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Solution of exercise 3

A possible choice of domain and symbols:
▶ domain: any set including all natural numbers (e.g., the set of

real numbers)
▶ constant symbols: Z , denoting the number zero
▶ predicate symbols:

– N, unary predicate denoting the fact of being a natural
number; e.g., N(Z ) means that zero is a natural number

– Eq, binary predicate denoting equality; e.g., Eq(Z , Z ) means
that zero equals zero

– P denoting any given property
▶ function symbols: S, mapping a natural number to its

successor; e.g., S(Z ) denotes one, S(S(Z )) denotes two
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Solution of exercise 3

P1 N(Z )
P2 ∀x N(x)⇒ N(S(x))
P3 ¬(∃x Eq(Z , S(x)))
P4 ∀x , y Eq(S(x), S(y))⇒ Eq(x , y)
P5 (P(Z ) ∧ ∀x((N(x) ∧ P(x))⇒ P(S(x))))⇒

(∀x (N(x)⇒ P(x)))
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Solution of exercise 4

A possible choice of domain and symbols:
▶ domain: a set including different individuals (among which

Colonel West), nations (among which America and Nono),
and missiles

▶ constant symbols: West, America and Nono
▶ predicate symbols:

– Country(·), American(·), Missile(·), Weapon(·), Hostile(·):
respectively, being: a country, an American citizen, a missile, a
weapon, hostile

– Enemy(< who >, < to whom >): being enemies
– Owns(< who >, < what >): owning something
– Sells(< who >, < what >, < to whom >):

selling something to someone
▶ no function symbols are necessary



131

Solution of exercise 4

The law says that it is a crime for an American to sell weapons to hostile
nations:
∀x , y , z (American(x) ∧ Country(y) ∧ Hostile(y) ∧Weapon(z)∧

Sells(x , y , z))⇒ Criminal(x)

The second proposition can be conveniently split into simpler ones:

Nono is a country...:
Country(Nono)

...Nono is an enemy of America (which is also a country)...:
Enemy(Nono, America)
Country(America)

...Nono has some missiles...:
∃x Missile(x) ∧ Owns(Nono, x)

...all Nono’s missiles were sold to it by Colonel West:
∀x (Missile(x) ∧ Owns(Nono, x))⇒ Sells(West, Nono, x)



132

Solution of exercise 4

A human would intuitively say that the above propositions in
natural language imply that West is a criminal.
However, it is not difficult to see that the above sentences in
predicate logic are not sufficient to prove this.
The reason is that humans exploit background knowledge (or
common sense) that is not represented explicitly in the above
propositions. In particular, there are two “missing links”:
▶ an enemy nation is hostile
▶ a missile is a weapon

To use such additional knowledge, it must be explicitly
represented by sentences in predicate logic:
▶ ∀x , y (Country(x) ∧ Enemy(x , America))⇒ Hostile(x)
▶ ∀x Missile(x)⇒Weapon(x)
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Knowledge engineering

Knowledge engineering is the process of constructing a KB.

It consists of investigating a specific domain, identifying the
relevant concepts (knowledge acquisition), and formally
representing them.

This requires the interaction between
▶ a domain expert (DE)
▶ a knowledge engineer (KE), who is expert in knowledge

representation and inference, but usually not in the domain of
interest

A possible approach, suitable for special-purpose KBs (in
predicate logic), is the following.
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Knowledge engineering

1. Identify the task:
– what range of queries will the KB support?
– what kind of facts will be available for each problem instance?

2. Knowledge acquisition: eliciting from the domain expert the
general knowledge about the domain (e.g., the rules of chess)

3. Choice of a vocabulary: what concepts have to be represented as
objects, predicates, functions?
The result is the domain’s ontology, which affects the complexity
of the representation and the inferences that can be made.
E.g., in the wumpus game pits can be represented either as objects,
or as unary predicates on squares.

(cont.)
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Knowledge engineering

4. Encoding the domain’s general knowledge acquired in step 2
(this may require to revise the vocabulary of step 3)

5. Encoding a specific problem instance (e.g., a specific chess
game)

6. Posing queries to the inference procedure and getting answers
7. Debugging the KB, based on the results of step 6
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Applications of predicate logic and inference algorithms

Logic programming languages, in particular Prolog, used for:
▶ rapid prototyping
▶ symbol processing applications (compilers, natural language parsers,

etc.)
▶ developing expert systems

Example of a Prolog clause:
criminal(X) :- american(X), weapon(Y), sells(X,Y,Z),

hostile(Z).

Running a program consists of proving a sentence (query) using a
specific inference algorithm, e.g.:
▶ ?- criminal(west)

produces Yes
▶ ?- criminal(A)

produces A=west, Yes



137

Applications of predicate logic and inference algorithms

Theorem provers, used for:
▶ assisting (not replacing) mathematicians
▶ proof checking
▶ verification and synthesis of hardware and software

– hardware design (e.g., entire CPUs)
– programming languages (syntax)
– software engineering (verifying program specifications, e.g.,

RSA public key encryption algorithm)
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Other applications
Encoding condition-action rules to recommend actions, based on a
data-driven approach: expert systems and production systems
(production: condition-action rule).
Expert systems
▶ encoding human experts’ problem-solving knowledge in the form of

IF...THEN... rules, in specific application domains for which no
algorithmic solutions exist (e.g., medical diagnosis)

▶ used as decision support systems, to support (not to replace)
experts’ decisions

▶ popular in the 1980s, used in niche/restricted domains since the
1990s (medical diagnosis, geology, finance, military strategies,
software engineering, help desk)

▶ examples of free Expert System shells
– CLIPS (C Language Integrated Production System)

https://www.clipsrules.net/
– Drools (Business Rules Management System)

http://www.drools.org

https://www.clipsrules.net/
http://www.drools.org
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Beyond classical logic

Classical logic is based on two principles:
▶ bivalence: there exist only two truth values, true and false
▶ determinateness: each proposition has only one truth value

But: how to deal with propositions like the following ones?
▶ Tomorrow will be a sunny day : is this true or false, today?
▶ John is tall : is this “completely” true (or false)?

This kind of problem is addressed by fuzzy logic
▶ Goldbach’s conjecture: Every even number is the sum of a

pair of prime numbers
No proof has been found yet: can we still say this is either
true or false?
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