
1

Artificial Intelligence
academic year 2024/2025

Giorgio Fumera

Pattern Recognition and Applications Lab
Department of Electrical and Electronic Engineering

University of Cagliari (Italy)

http://pralab.diee.unica.it/en
http://pralab.diee.unica.it/en


2

Knowledge Representation and Inference
under Uncertainty



3

Suggested textbooks

This course requires a basic knowledge of probability theory.

Bayesian neworks are covered by the course textbook, which provides also
an informal introduction to probability theory:
S. Russell, P. Norvig, Artificial Intelligence – A Modern Approach, 4th
Ed., Pearson, 2021 (or a previous edition)

For a formal and comprehensive introduction to probability theory,
textbooks like the following one are suggested: A.M. Mood, F.A.
Graybill, D.C. Boes, Introduction to the Theory of Statistics,
McGraw-Hill, 1991 / 1998
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Introduction

Often rational agents must
make decisions and act under
uncertainty about their
environments, e.g.:

▶ the wumpus world (sensors report only local information)
▶ medical diagnosis from patients’ symptoms and outcomes of

medical tests
▶ speech/image recognition from (noisy) audio/video signals
▶ self-driving vehicles (incomplete and noisy sensory data)
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Limitations of logical agents

Logical agents can only deal with propositions that are either true,
false, or unknown, but they cannot represent a degree of belief
about propositions.

Example: consider the agent’s
knowledge about the
configuration of the wumpus
world show on the right, after
having explored squares
(1, 1), (1, 2) and (2, 1).
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Figure 12.4 Two examples of factoring a large joint distribution into smaller distributions,
using absolute independence. (a) Weather and dental problems are independent. (b) Coin
flips are independent.
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Figure 12.5 (a) After finding a breeze in both [1,2] and [2,1], the agent is stuck—there is no
safe place to explore. (b) Division of the squares into Known , Frontier , and Other , for a
query about [1,3].

A logical agent cannot conclude anything about which of the
reachable squares (1, 3), (2, 2) and (3, 1) is most likely to be safe
from pits: therefore it can only decide the next move randomly.
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Limitations of logical agents

Diagnosis problems (e.g., in medicine) are a good example of the
limitations of the logical approach in dealing with uncertainty.

Example: the following dental diagnosis rule (where p denotes a patient)
is wrong, since toothache can have other causes besides cavity:

∀p Symptom(p, Toothache)⇒ Disease(p, Cavity)

Trying to specify all possible causes is pointless, e.g.:

∀p Symptom(p, Toothache)⇒
Disease(p, Cavity) ∨ Disease(p, Abscess) ∨ . . .

Turning the first rule into a causal one does not work, either, since not
all cavities cause toothache:

∀p Disease(p, Cavity)⇒ Symptom(p, Toothache)
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Making rational decisions under uncertainty

Uncertainty can be due to laziness, or by theoretical or practical
ignorance.

In domains involving uncertainty (medicine, business, law, etc.), including
AI, only a degree of belief in sentences of interest can be provided.

Probability theory is a widely used tool to summarise this kind of
uncertainty into a numerical value, conventionally in the range [0, 1].

For instance, stating that the probability that a patient with a toothache
has a cavity is 0.8 means that
▶ in all possible situations indistinguishable by the agent from the

current one, 80% of patients suffering from toothache have a cavity
▶ the missing 20% summarises all the other possible causes of

toothache the agent is too lazy or ignorant to confirm or deny
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Making rational decisions under uncertainty

An effective decision-making agent under uncertainty should have
preferences about the possible outcomes of its actions.

Representing and reasoning with preferences is the subject of
utility theory.

Rational decision-making under uncertainty can be achieved by
combining the likelihood (probability) and the preference of
actions’ outcomes, which in turn is the subject of decision theory:

Decision theory = probability theory + utility theory

Basically, a rational agent chooses the actions that yields the
highest expected utility, averaged over all its possible outcomes.
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Elements of probability theory
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A notation for probability theory

In the following, a version of probability theory suited to AI
applications will be presented, as a formal language for
knowledge representation and reasoning under uncertainty.

This formal language is characterised by two elements:
▶ the kind of sentence to which degrees of beliefs are assigned
▶ the distiction between prior and conditional probability

statements, related to the evidence available to the agent

The considered notation is an extension of propositional logic.
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Propositions and random variables

Degrees of belief are assigned to propositions (natural language
statements that can be either true or false), that refer to the “state of
the world” of interest to the agent.

Propositions used in probability theory describe the “state of the world”
in terms of a predefined set of random variables, each one referring to a
“part” of the world.

Each random variable has a domain, i.e., the set of mutually exclusive
values it can take.

Conventionally, random variables are represented by uppercase names
(e.g., Weather) and their values as lowercase names (e.g., sunny).
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The domain of random variables

The domain of random variables can be of three kinds:
▶ Boolean: {true, false}
▶ discrete: a set of countable values

– categorical, e.g.: {sunny , rainy , cloudy , snow} for a random
variable Weather

– numerical, e.g., integer values
– Boolean (a particular case of categorical values)

▶ continuous: real numbers, e.g., the interval [0, 1]
This course will consider only discrete random variables.

It turns out that also for unordered categorical domains it is
convenient to impose an (arbitrary) ordering on their values:
therefore categorical domains will be written as tuples, e.g.,
⟨true, false⟩, instead of sets.
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Elementary and complex propositions

Example: two Boolean random variables related to a given person
▶ Cavity : whether the lower left wisdom tooth has a cavity
▶ Toothache: whether that person suffers from toothache

Elementary propositions assert that a single random variable has
a particular value from its domain, e.g.:

Cavity = true

Complex propositions combine elementary ones using standard
logical connectives, e.g.:

Cavity = true ∧ Toothache = false

Each proposition can be assigned a degree of belief.
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Atomic events

Atomic event: a complete description of the “state of the world”
about which the agent is uncertain.

It is defined by a proposition that assigns values to all the random
variables used by the agent.

Example: an agent uses only the two Boolean random variables
Cavity and Toothache
▶ there are four distinct atomic events
▶ one of them is:

Cavity = true ∧ Toothache = false
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Properties of atomic events

▶ Atomic events are mutually esclusive and exhaustive:
exactly one of them must be the case

▶ Any atomic event entails the truth or falsehood of every
proposition; e.g., Cavity = true ∧ Toothache = false entails

– the truth of Cavity = true
– the falsehood of Cavity ⇒ Toothache

▶ Any proposition is logically equivalent to the disjunction of all
atomic events that entail its truth, e.g.:

Cavity = true ≡ (Cavity = true ∧ Toothache = true) ∨
(Cavity = true ∧ Toothache = false)
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Prior probability

The degree of belief p assigned to a given proposition A, in the
absence of any other information, is called unconditional or prior
probability.

The usual notation is P(A) = p. Some examples:

P(Weather = sunny) = 0.35
P(Cavity = true ∧ Toothache = true) = 0.15
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Probability distribution

Prior probability distribution: the assignment of prior
probabilities to all the values in the domain of a discrete random
variable.

Example: a possible probability distribution for Weather , having
domain ⟨sunny , rain, cloudy , snow⟩:

P(Weather = sunny) = 0.7
P(Weather = rain) = 0.2
P(Weather = cloudy) = 0.08
P(Weather = snow) = 0.02

In vector notation:

P(Wheather) = ⟨0.7, 0.2, 0.08, 0.02⟩
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The axioms of probability

The foundations of probability theory are defined as a set of
axioms. In particular, Kolmogorov’s axioms:

1. 0 ≤ P(A) ≤ 1, for any proposition A
2. P(true) = 1, P(false) = 0

– true corresponds to the occurrence of any atomic event, which
is a certain event

– false corresponds to the occurrence of no atomic event, which
is an impossible event

3. P(A ∨ B) = P(A) + P(B)− P(A ∧ B),
for any pair of propositions A and B
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Consequences of the axioms of probability
From the axioms of probability many theorems can be derived.
Examples:
▶ for any event A: P(A) + P(¬A) = 1
▶ the values of the probability distribution of a discrete random

variable X with domain ⟨x1, x2, . . . , xn⟩ must sum to 1 (this is
a particular case of the previous theorem):

n∑
i=1

P(X = xi) = 1

▶ the probability of a proposition A equals the sum of the
probabilities of all the atomic events Ek in which it holds, i.e.,
if A =

∨
k Ek , then:

P(A) =
∑

k
P(Ek)
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Joint probability distribution

It is often useful to consider the probability of the conjunction of values
of several random variables, e.g.:

P(Cavity = true ∧Weather = sunny)

The probabilities of all the combinations of values of a set of random
variables is called joint probability distribution.

Example: the joint probability distribution P(Cavity , Weather) can be
represented by a 4× 2 table of probabilities:

Weather
sunny rain cloudy snow

Cavity true 0.15 0.10 0.03 0.01
false 0.55 0.10 0.05 0.01

Note that, according to the axioms of probability, the probabilities of a
joint distribution sum to 1.
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Full joint probability distribution

The joint probability distribution of all the random variables used
by an agent is called full joint probability distribution.

Example: if an agent uses only the variables Cavity , Toothache
and Weather , the full joint distribution is

P(Cavity , Toothache, Weather) ,

which can be represented by a 2× 2× 4 table of 16 probabilities.

Note that the full joint distribution specifies the probability of
every atomic event.
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Conditional probability

If evidence about some random variables has been obtained,
conditional or posterior probabilities of the remaining random
variables have to be considered.

Example: a patient is known to suffer from toothache, and no
other information is yet available
▶ the prior probability P(Cavity = true) does not reflect

anymore the current state of knowledge
▶ the conditional probability of the patient’s having a cavity

given that she suffers from toothache should be considered,
e.g., in the conventional notation:

P(Cavity = true|Toothache = true)
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Conditional probability

Conditional probabilities are defined in terms of unconditional ones. For
any pair of propositions A and B:

P(A|B) ≜ P(A ∧ B)
P(B)

As a particular case, for any pair of random variables X and Y and any
pair of values x and y in the respective domains:

P(X = x |Y = y) = P(X = x , Y = y)
P(Y = y)

Example:

P(Cavity = true|Toothache = true) = P(Cavity = true, Toothache = true)
P(Toothache = true)



25

Conditional probability distribution

For any pair of random variables X and Y and values y in the
domain of Y , the conditional probability distribution of X given
Y = y can be written in vector notation:

P(X |Y = y)

Example: P(Cavity |Toothache = true) = ⟨0.8, 0.2⟩

Note that:
▶ also the values of a conditional distribution sum to 1
▶ every value of the conditioning variable corresponds to a

distinct conditional distribution, e.g.:
– P(Cavity |Toothache = true) = ⟨0.8, 0.2⟩
– P(Cavity |Toothache = false) = ⟨0.05, 0.95⟩
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Product rule

From the definition of conditional probability the so called
product rule immediately follows:

P(A ∧ B) = P(A|B)P(B)

As a particular case, for any pair of random variables X and Y and
any pair of values x and y in the respective domains:

P(X = x , Y = y) = P(X = x |Y = y)P(Y = y)

Their joint distribution can now be rewritten in vector notation:

P(X , Y ) = P(X |Y )P(Y ) ,

where the right-hand side denotes element-wise multiplication of
the corresponding table values, not matrix multiplication.
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Marginal probability distribution

Given the joint distribution of any set of random variables
P(X1, . . . , Xn), the prior distribution of any subset of them, e.g.,
P(X1, . . . , Xm), with 1 ≤ m < n, is called marginal probability
distribution.

Example: Consider the joint distribution P(Cavity , Weather)
shown before:

Weather
sunny rain cloudy snow

Cavity true 0.15 0.10 0.03 0.01
false 0.55 0.10 0.05 0.01

P(Cavity) and P(Weather) are marginal distributions with respect
to P(Cavity , Weather).
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Marginal probability distribution

How can one compute a marginal distribution from a known joint
distribution, e.g., P(Cavity) from P(Cavity , Weather)?

To this aim, a result mentioned above can be exploited, i.e.:
the probability of any proposition equals the sum of the
probabilities of all the atomic events in which it holds.

For instance, P(Cavity = true) is the sum of all the values of
P(Cavity , Weather) where Cavity = true:

P(Cavity = true) = 0.15 + 0.10 + 0.03 + 0.01 = 0.39
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Marginalisation, or sum rule

In general, for any disjoint sets of variables Y and Z:

P(Y) =
∑

z
P(Y, Z = z) ,

where the sum is over all combinations of values of the variables Z.

This process is called marginalisation, or sum rule, and can be
applied if the joint distribution P(Y, Z) is known.

It is often useful to rewrite the sum rule in terms of the product
rule, using conditional probabilities:

P(Y) =
∑

z
P(Y|Z = z)P(Z = z)
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Probabilistic inference

In most cases of interest for rational agents in AI, probabilistic
inference consists in computing the posterior probability of a set
of query variables Q given the evidence about a distinct set of
variables E = e
▶ either for a single value of interest q: P(Q = q|E = e)
▶ or the posterior distribution P(Q|E = e)

If the full joint distribution of the variables used by an agent is
known, the sum and product rules allow the agent, in priniciple,
to carry out any probabilistic inference, as shown in the following.
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Inference using the full joint distribution: example

An agent uses three Boolean variables related to a given patient of
a dentist:

– Toothache and Cavity , defined previously
– Catch: the dentist’s steel probe catches in the lower left

wisdom tooth
Assume the full joint distribution is:

Toothache = t Toothache = f
Catch = t Catch = f Catch = t Catch = f

Cavity = t 0.108 0.012 0.072 0.008
Cavity = f 0.016 0.064 0.144 0.576



32

Inference using the full joint distribution: example

Unconditional probabilities P(Q), such as

P(Cavity = true ∨ Toothache = true) ,

can be computed as shown above, as the sum of the probabilities
of the atomic events in which the event Q holds:

P(Cavity = true ∨ Toothache = true)
= 0.108 + 0.012 + 0.072 + 0.008 + 0.016 + 0.064 = 0.28



33

Inference using the full joint distribution: example

Conditional probabilities P(Q|E), such as

P(Cavity = true|Toothache = true) ,

can be computed using the definition of conditional probability, in terms
of unconditional ones, which can in turn be computed from the full joint
distribution as shown above:

P(Cavity = t|Toothache = t) = P(Cavity = t ∧ Toothache = t)
P(Toothache = t)

= 0.108 + 0.012
0.108 + 0.012 + 0.016 + 0.064

Note that the last step corresponds to applying the sum rule to the full
joint distribution.
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Inference using the full joint distribution

A general inference procedure for conditional distributions
P(Q|E = e), for the case of a single query variable Q, with Y
denoting all the remaining variables:

1. rewriting P(Q|E = e) using the definition of conditional
probability, in terms of unconditional probabilities

2. using the sum rule to compute the numerator and
denominator, from the full joint distribution P(Q, E, Y)

P(Q|E = e) = P(Q, E = e)
P(E = e) =

∑
y P(Q, E = e, Y = y)∑

q,y P(Q = q, E = e, Y = y)
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Inference using the full joint distribution

To sum up, if the full joint distribution of the random variables of
interest is known, the probability of any event can be computed
using
▶ the definition of conditional probability
▶ the sum and product rules

In practice, two issues arise:
▶ how to compute or estimate the full joint distribution?
▶ what is the computational complexity of the inference

procedure based on it?
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Defining the full joint distribution

Defining the full joint distribution of variables X1, . . . , Xn amounts
to assigning a probability value to each of the atomic events

X1 = x1 ∧ . . . ∧ Xn = xn

To assign a probability value to any event, including atomic ones,
three different approaches exist, based on different definitions of
probability:
▶ classical
▶ frequentist
▶ subjective
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Classical probability

In some cases the atomic events that describe the “state of the
world” can be assumed to be:
▶ mutually exclusive
▶ equally likely
▶ random

Examples: tossing a coin, throwing a dice.

In such cases the classical (or a priori) definition of probability
can be applied for any event A:

P(A) = number of atomic events where A holds
total number of atomic events
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Classical probability: examples

▶ Tossing a coin: probability of a head (or a tail)?
▶ Throwing a dice

– probability of face 3 up?
– probability of an even face up?

▶ Tossing two coins: probability of getting two heads?
▶ Throwing two dice

– probability of getting (6,6)?
– probability that the sum of the faces up is 6?

▶ Picking a card from a well shuffled deck of 52 cards
– probability of picking an ace of hearts (♡)?
– probability of picking an ace or a spade (♠)?
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Frequentist probability

In most practical applications the assumptions of classical probabilty are
not valid, e.g., computing P(A) for:
▶ A = face 6 up after throwing a loaded dice
▶ A = a chip manufactured by company XYZ is faulty
▶ A = a MSc student in CECAI graduates within 2 years

Nevertheless, it may be possible to observe multiple “states of the
world” under similar and uniform conditions, e.g.:
▶ repeatedly throwing a loaded dice and observing the outcomes
▶ testing a sample of the chips manufactured by company XYZ
▶ collecting records of past MSc students in CECAI
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Frequentist probability

If multiple “states of the world” can be observed under similar and
uniform conditions, the frequentist (or a posteriori) probability
definition can be used.

It estimates the probability of any event A, including atomic events, as
the relative frequency of its occurrences:

P(A) = number of observations where A occurs
total number of observations

Examples
▶ fraction of throws of a dice leading to face 6 up
▶ fraction of XYZ’s sampled chips that are faulty
▶ fraction of past MSc students in CECAI who graduated within 2

years
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Subjective probability

Common requirement of classical and frequentist probability: a
conceptual “experiment” in which the outcomes can occur under
uniform conditions.

This requirement is not always fulfilled. For instance, how to
compute the probability that
▶ the piano player John Smith will break one or both of his

hands within the next 10 years?
▶ the third World War will start within 2025?

In such cases subjective probability can be used, e.g., involving
domain experts’ judgement.
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Computational complexity of probabilistic inference

For n discrete random variables X1, . . . , Xn whose domains are
made up of d1, . . . , dn values, the number of atomic events is

d1 × . . .× dn

Therefore, the number of probability values to be assigned to
define the full joint distribution (they must sum to 1) grows
exponentially in the domain size:

d1 × . . .× dn − 1

Example: for n Boolean variables
▶ the number of atomic events is 2n

▶ the number of probability values to assign is 2n − 1
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Computational complexity of probabilistic inference

Also the probabilistic inference procedure presented above has an
exponential complexity in the domain size, due to the sum rule.

For instance, for n Boolean variables X1, . . . , Xn the marginal
distribution P(X1) is given by∑

x2,...,xn∈{0,1}n−1

P(X1, X2 = x2, . . . , Xn = xn) ,

which requires n − 2 sums for each of the 2n−1 combinations of
values x2, . . . , xn, i.e., O(2n) sums.

Therefore, the full joint distribution in tabular form is not a
practical tool for building probabilistic reasoning systems.
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Independence

Two events A and B are said to be independent, if any of the
following equivalent relation holds:

P(A|B) = P(A), P(B|A) = P(B), P(B ∧ A) = P(A)P(B)

In particular, two variables X and Y are independent, if any of the
following relation holds between their distributions:

P(X |Y ) = P(X ), P(Y |X ) = P(Y ), P(X , Y ) = P(X )P(Y )

Independence is useful to our purposes since it reduces
▶ the number of probability values to be assigned to specify the

full joint distribution
▶ the computational complexity of probabilistic inference
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Independence: example

Assume that an agent uses the variables
▶ Toothache, Catch and Cavity (all Boolean)
▶ Weather , with domain ⟨sunny , rain, cloudy , snow⟩

The full joint distribution P(Toothache, Catch, Cavity , Weather) is
specified by a 2× 2× 2× 4 table of 32 probability values.

Is there any way to reduce the number of probabilty values to
assign, to specify this distribution?

To this aim, one may wonder whether and how dental problems
(toothache, the dentist’s probe catching in a tooth, and cavities)
and the weather are related to each other. . .
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Independence: example

. . . Consider rewriting the full joint distribution using the product rule:

P(Toothache, Catch, Cavity , Weather)
= P(Weather |Toothache, Catch, Cavity)P(Toothache, Catch, Cavity)

It is reasonable to assume that dental problems do not influence the
weather, i.e., the variable Weather can be assumed to be independent
from Toothache, Catch and Cavity :

P(Weather |Toothache, Catch, Cavity) = P(Weather)

This allows rewriting the full joint distribution as:

P(Toothache, Catch, Cavity , Weather)
= P(Weather)P(Toothache, Catch, Cavity)



47

Independence: example

Using the last expression, the full joint distribution can be specified by:
▶ P(Weather): 41 − 1 = 3 probability values,
▶ P(Toothache, Catch, Cavity): 23 − 1 = 7 probability values,

for a total of 3 + 7 = 10 values, instead of 24 − 1 = 31!

In the best case, all variables are independent. For instance, the full
joint distribution of n Boolean variables is specified by
▶ 2n − 1 = O(2n) values, in general (exponential in n)
▶ n × (21 − 1) = n = O(n) values, if they are independent

(linear in n), i.e.:

P(X1, . . . , Xn) =
n∏

i=1
P(Xi)

Unfortunately, in practice absolute independence is quite rare, even
among subsets of random variables.
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Conditional independence

Consider the joint distribution P(Toothache, Catch, Cavity), which
is specified by 23 − 1 = 7 values.

These variables, or subsets of them, cannot be assumed to be
independent. For instance, if the probe catches in the tooth,
probably there is a cavity, and that probably causes a toothache.

Noting that cavity is a possible cause of effects like toothache
and the dentist’s probe catching in a tooth, let us rewrite the joint
distribution using the product rule in the form P(effect|cause):

P(Toothache, Catch, Cavity) = P(Toothache, Catch|Cavity)P(Cavity)

What can we say about P(Toothache, Catch|Cavity)?
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Conditional independence

Given the state (presence of absence) of a cavity, Toothache and
Catch have no direct influence on each other, and therefore can be
assumed to be independent, which is written as:

P(Toothache, Catch|Cavity) = P(Toothache|Cavity)P(Catch|Cavity)

Equivalently:

P(Toothache|Catch, Cavity) = P(Toothache|Cavity)

This is an example of conditional independence.

This allows the joint distribution to be rewritten as

P(Toothache, Catch, Cavity) = P(Toothache, Catch|Cavity)P(Cavity)
= P(Toothache|Cavity)P(Catch|Cavity)P(Cavity)
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Conditional independence

How many probability values must be assigned to specify the joint
distribution P(Toothache, Catch, Cavity), using the conditional
independence assumption above?
▶ P(Toothache|Cavity): 2× (21 − 1) = 2 values,
▶ P(Catch|Cavity): 2× (21 − 1) = 2 values,
▶ P(Cavity): 21 − 1 = 1 value,

for a total of 2 + 2 + 1 = 5 values, instead of 7.

This may seem a small gain. . .
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Conditional independence

. . . However, in practical applications involving many random
variables and non-Boolean domains the advantage can be notable.

For instance, consider n Boolean variables X1, . . . , Xn conditionally
independent given a Boolean variable Y :
▶ the full joint distribution P(X1, . . . , Xn, Y ) is specified by

2n+1 − 1 = O(2n+1) probability values
▶ the equivalent expression P(Y )P(X1|Y )× . . .× P(Xn|Y ) is

specified by
– P(Y ): 21 − 1 = 1 value,
– P(Xi |Y ), i = 1, . . . , n: n × (21 − 1) = n values,

for a total of n + 1 = O(n) values
This means that the number of probability values to assign reduces
from exponential to linear in the number of variables.
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Conditional independence

In general, two variables X and Y are conditionally independent
given a variable Z , if:

P(X , Y |Z ) = P(X |Z )P(Y |Z )

As with absolute independence, this is equivalent to:

P(X |Y , Z ) = P(X |Z ) and P(Y |X , Z ) = P(Y |Z )

Conditional independence is very useful in practice:
▶ it allows probabilistic systems to scale up
▶ it is much more common than absolute independence



53

Probabilistic inference

As mentioned above, probabilistic inference in AI usually consists
in computing posterior probabilities P(Q|E)
▶ Q: a query event
▶ E : an available evidence

In terms of random variables, the most general form of probabili-
stic inference consists in computing a conditional probability
distribution P(Q|E)
▶ Q: a set of query variables
▶ E: a distinct set of evidence variables
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Probabilistic inference: Bayes’ rule

Consider any pair of events A and B. The probability of their
conjunction can be rewritten using the product rule:

P(A ∧ B) = P(A|B)P(B)
P(B ∧ A) = P(B|A)P(A)

Since P(A ∧ B) = P(B ∧ A), it follows that:

P(B|A) = P(A|B)P(B)
P(A)

The above equation is known as Bayes’ rule. It turns out to be a
fundamental tool for probabilistic inference in AI systems.



55

Probabilistic inference: Bayes’ rule

In terms of probability distributions of random variables, Bayes’ rule can
be written as:

P(X |Y ) = P(Y |X )P(X )
P(Y )

The most general form involves sets of random variables:

P(X|Y) = P(Y|X)P(X)
P(Y)

Note that the denominator can be rewritten in turn as a function of the
same distributions in the numerator, using the sum and product rules:

P(Y) =
∑

x
P(Y, X = x) =

∑
x

P(Y|X = x)P(X = x)
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When and why is Bayes’ rule useful?

To compute one conditional probability, Bayes’ rule requires three other
probabilities. So, why is it useful in AI (and in other domains)?

The reason is that probabilistic inference is usually of diagnostic form:

P(cause|effect) ,

where the evidence consists of observed effects (e.g., a symptom like
toothache) of a possible cause of interest (e.g., a cavity).

In practice, diagnostic knowledge, i.e., estimating P(cause|effect), is
more difficult to obtain than causal knowledge, i.e., P(effect|cause).

For instance, P(Cavity |Toothache) can be more difficult to estimate than
P(Toothache|Cavity).

(cont.)
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When and why is Bayes’ rule useful?

In this context, Bayes’ rule allows to carry out diagnostic inference
using only causal knowledge:

P(cause|effect) = P(effect|cause)P(cause)
P(effect)

Note that, as shown above, P(effect) can be computed in terms of
P(effect|cause) and P(cause): therefore, only these two
probabilities need to be estimated.
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Probabilistic inference using Bayes’ rule: an example

A doctor knows that
▶ meningitis causes stiff neck in 50% of patients (causal

knowledge)
▶ 1 out of 50.000 individuals in the population has meningitis
▶ 1 out of 20 individuals suffers from stiff neck

Using the Boolean variables M and S to denote whether a random
individual has meningitis and stiff neck, respectively, the above
knowledge can be formalised as:
▶ P(S = true|M = true) = 0.5
▶ P(M = true) = 1/50.000
▶ P(S = true) = 1/20

(cont.)
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Probabilistic inference using Bayes’ rule: an example

The doctor can be interested in computing the probability that a
patient with stiff neck has meningitis (diagnostic inference).

She can exploit the above knowledge, using Bayes’ rule:

P(M = true|S = true) = P(S = true|M = true)P(M = true)
P(S = true)

= 0.5× 1/50.000
1/20 = 0.0002

This is a particular case of the general fact mentioned above: in
the medical domain, diagnostic knowledge (from symptoms to
diseases) is usually more difficult to obtain than causal knowledge
(from diseases to symptoms).

(cont.)
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Probabilistic inference using Bayes’ rule: an example

Even if diagnostic knowledge is available from statistical observa-
tion to directly estimate P(M = true|S = true), what happens if
there is an epidemic of meningitis, i.e., if P(M = true) increases?

Intuitively, also P(M = true|S = true) will increase, but how to
update it?

Also in this case Bayes’ rule is useful, because:
▶ P(S = true|M = true) is unaffected by the epidemic
▶ thus P(M = true|S = true) increases proportionately with

P(M = true)
This is an example of how causal knowledge provides the
necessary robustness to make probabilistic systems feasible in
practical applications.
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Using Bayes’ rule for combining evidence

Consider again the variables Toothache, Catch and Cavity .

A dentist may collect two evidences: her probe chatches in the
patient’s aching tooth. She is therefore interested in the following
conditional distribution:

P(Cavity |Toothache, Catch)

This is a kind of diagnostic inference of the form

P(cause|effects)

We already know that using the full joint distribution (if known) to
compute the above conditional probability does not scale up to
large numbers of variables.
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Using Bayes’ rule for combining evidence

The doctor can try to apply Bayes’ rule to turn diagnostic
inference into causal inference of the form P(effects|cause):

P(Cavity |Toothache, Catch)

= P(Toothache, Catch|Cavity)P(Cavity)
P(Toothache, Catch)

However, estimating P(Toothache, Catch|Cavity) still requires
2× (22 − 1) = 6 probability values, which does not scale up to
larger numbers of evidence and query variables, either.

For instance, for n evidence variables E1, . . . , En and a single query
variable Q, all Boolean, the conditional distributions
P(E1, . . . , En|Q) require 2× (2n − 1) probability values.

(cont.)
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Using Bayes’ rule for combining evidence

Fortunately, we have seen that a conditional independence
assumption can be made:

P(Toothache, Catch|Cavity)
= P(Toothache|Cavity)P(Catch|Cavity)

Each distribution in the right-hand side is specified by

2× (21 − 1) = 2

probability values, for a total of 4 values instead of 6.
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Using Bayes’ rule for combining evidence

In general, if n Boolean evidence variables E1, . . . , En are
conditionally independent on a Boolean query variable Q, i.e.:

P(E1, . . . , En|Q) =
n∏

i=1
P(Ei |Q) ,

the number of probability values to specify reduces from
2× (2n − 1) = O(2n+1) to n × 2× (21 − 1) = 2n = O(n).

This example highlights the usefulness of conditional indepen-
dence, together with Bayes’ rule, for diagnostic inference of the
form P(cause|effects) involving the combination of different pieces
of evidence.
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Exercise: the wumpus world revisited

Two properties of the wumpus world are that
▶ a pit causes breezes in all neighboring squares
▶ each square other than (1, 1) can contain a pit with

probability 0.2

Consider now the agent’s
knowledge about the
configuration of the wumpus
world shown on the right, after
having explored squares
(1, 1), (1, 2) and (2, 1).
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Weather

Toothache Catch

Cavity

decomposes
      into

WeatherToothache Catch
Cavity

decomposes
       into

Coin1 Coinn

Coin1 Coinn

(a) (b)

Figure 12.4 Two examples of factoring a large joint distribution into smaller distributions,
using absolute independence. (a) Weather and dental problems are independent. (b) Coin
flips are independent.

OK

 1,1  2,1  3,1  4,1

 1,2  2,2  3,2  4,2

 1,3  2,3  3,3  4,3

 1,4  2,4

OKOK

 3,4  4,4

B

B

1,1  2,1  3,1  4,1

1,2 2,2  3,2  4,2

 2,3  3,3  4,3

 2,4  3,4  4,4

KNOWN

FRONTIER

1,3

1,4

QUERY
OTHER

(a) (b)

Figure 12.5 (a) After finding a breeze in both [1,2] and [2,1], the agent is stuck—there is no
safe place to explore. (b) Division of the squares into Known , Frontier , and Other , for a
query about [1,3].

Based on the current agent’s knowledge, each of the three
reachable squares (1, 3), (2, 2) and (3, 1) can contain a pit: what is
the probability that each of them contains a pit?
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Bayesian networks
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Probabilistic graphical models

Probabilistic graphical models: a framework to represent in
graphical form the structure of probability distributions.

Main classes of graphical models:
▶ Bayesian networks: directed acyclic graphs
▶ Markov random fields: undirected graphs

This course focuses on Bayesian networks, which are useful for
▶ representing the joint distribution of random variables,

expressing causal dependencies and conditional
independence relations between them

▶ developing efficient probabilistic inference algorithms based
on graph structure
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The chain rule

Bayesian networks exploit a particular expression of the joint distribution
of a set of variables based on the product rule.

Example: consider three variables X1, X2, X3; their joint distribution
P(X1, X2, X3) can be rewritten using the product rule as:

P(X1, X2, X3) = P(X3|X2, X1)P(X2, X1)

Applying again the product rule to P(X2, X1):

P(X1, X2, X3) = P(X3|X2, X1)P(X2|X1)P(X1)

Different but equivalent expressions of the same joint distribution can
be obtained considering a different order between the variables, e.g.:

P(X1, X2, X3) = P(X2|X1, X3)P(X1|X3)P(X3)
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The chain rule

In general, for a given order of n variables:

P(X1, X2, . . . , Xn)
= P(Xn|Xn−1, . . . , X1)P(Xn−1|Xn−2, . . . , X1) · · ·P(X2|X1)P(X1)

=
n∏

k=1
P(Xk |Xk−1, . . . , X1)

This equivalence is called chain rule.

Note the structure of this expression of the joint distribution:
▶ a product of n − 1 conditional and 1 unconditional distributions
▶ each term is the distribution of a single, distinct variable
▶ each conditional distribution is conditioned on all the variables that

follow the considered one in the chosen order
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Bayesian network structure
The expression of the joint distribution obtained using the chain rule can
be represented by a Bayesian network (BN), which is a directed
acyclic graph (DAG) where
▶ each node represents one of the random variables, and is

associated with its distribution in the expression of the chain rule
▶ oriented edges represent conditional dependencies, linking each

variable (node) with the ones on which its distribution is conditioned

Example: BNs representing two possible, equivalent expressions of the
joint distribution P(X1, X2, X3)

X3 X2

X1

P(X1|X2, X3)P(X2|X3)P(X3)

X1 X2

X3

P(X3|X2, X1)P(X2|X1)P(X1)
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Bayesian network structure

In a BN the conditional distribution P(Xk |Xk−1, . . . , X1) is represented by

▶ a node associated with Xk

▶ edges pointing from nodes
Xk−1, . . . , X1 to Xk , which
are called the parents of Xk

Example:

X3 X2

X1 P(X1 | X2, X3)

Denoting the set of parents of Xk by pa(Xk), the chain rule can be
concisely written as

P(X1, X2, . . . , Xn) =
n∏

k=1
P(Xk |pa(Xk))
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Bayesian network structure

A BN representing a joint distribution expressed through the chain
rule is a fully connected DAG, i.e., there is an edge (regardless of
the direction) between every pair of nodes.

Examples:

X3 X2

X1

P(X1, X2, X3) =
P(X1|X2, X3)P(X2|X3)P(X3)

X4 X3

X2 X1

P(X1, X2, X3, X4) =
P(X1|X2, X3, X4)P(X2|X3, X4)×
P(X3|X4)P(X4)



73

Probabilistic inference with Bayesian networks

The chain rule suggests that, instead of estimating the full joint
distribution, one could estimate the corresponding conditional (or
marginal) distributions, and use them for probabilistic inference.

Example: given three variables X1, X2, X3, we know that any probability
involving them can be computed from the full joint distribution using the
definition of conditional probability and the sum rule, e.g.:

P(X1|X2) = P(X1, X2)
P(X2) =

∑
x3

P(X1, X2, X3 = x3)∑
x1,x3

P(X1 = x1, X2, X3 = x3)

Using the chain rule, the numerator could be computed, e.g., as:∑
x3

P(X1|X2, X3 = x3)P(X2|X3 = x3)P(X3 = x3)
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Complexity of probabilistic inference with BNs

Does the chain rule provide any advantage over the full joint distribution?

If one considers the number of probability values to estimate for specify-
ing the distributions required by the chain rule, the answer is no: both
approaches are equivalent under this aspect.

Example: consider three Boolean variables, and one possible expression
of the chain rule:

P(X1, X2, X3) = P(X1|X2, X3)P(X2|X3)P(X3)

To estimate P(X1, X2, X3) one needs to specify 23 − 1 = 7 probability
values.

(cont.)
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Complexity of probabilistic inference with BNs

To estimate the three distributions required by the chain rule, one
needs to specify:
▶ P(X1|X2, X3): 22 × (21 − 1) = 4 values,
▶ P(X2|X3): 2× (21 − 1) = 2 values,
▶ P(X3): 21 − 1 = 1 value,

for a total of 7 values, as for the full joint distribution.
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Conditional indepence relations in Bayesian networks

On the other hand, we have seen that conditional independence can
reduce the complexity of estimating conditional distributions.

Conditional independence relations can be exploited in the expression of
the chain rule. For instance, consider the above example on three
Boolean variables:

P(X1, X2, X3) = P(X1|X2, X3)P(X2|X3)P(X3)

If X1 is conditionally independent on X2 given X3, i.e.,

P(X1|X2, X3) = P(X1|X3) ,

to estimate P(X1|X3) one needs to specify 2× (21 − 1) = 2 probability
values instead of 22 × (21 − 1) = 4.
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Conditional indepence relations in Bayesian networks

Conditional independence relations are expressed in the structure of a BN
by the absence of the corresponding edges, leading to a DAG which is
not fully connected.

In the previous example, the general expression of the chain rule
corresponds to the fully connected BN shown below on the left. The
expression resulting from the conditional independence assumption is:

P(X1, X2, X3) = P(X1|X3)P(X2|X3)P(X3) ,

which corresponds to the BN below on the right.

X3 X2

X1

X3

X2X1
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Conditional indepence relations in Bayesian networks
Example: a possible expression of the full joint distribution of four
Boolean variables, corresponding to the BN shown below on the left:

P(X1, X2, X3, X4) = P(X1|X2, X3, X4)P(X2|X3, X4)P(X3|X4)P(X4)

If X1 is conditionally independent on X2 and X4 given X3, and X2 is
conditionally independent on X3 given X4 (see the BN below on the
right):

P(X1, X2, X3, X4) = P(X1|X3)P(X2|X4)P(X3|X4)P(X4)

X4 X3

X2 X1

X4 X3

X2 X1

(cont.)
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Conditional indepence relations in Bayesian networks

How many proability values need to be specified to estimate the
full joint distribution using the chain rule?
▶ General form: P(X1|X2, X3, X4)P(X2|X3, X4)P(X3|X4)P(X4)

– P(X1|X2, X3, X4): 23 × (21 − 1) = 8 values,
– P(X2|X3, X4): 22 × (21 − 1) = 4 values,
– P(X3|X4): 2× (21 − 1) = 2 values,
– P(X4): 21 − 1 = 1 value, for a total of 15 values

▶ Taking into account conditional independence relations:
P(X1|X3)P(X2|X4)P(X3|X4)P(X4)

– P(X1|X3): 2× (21 − 1) = 2 values,
– P(X2|X4): 2× (21 − 1) = 2 values,
– P(X3|X4): 2× (21 − 1) = 2 values,
– P(X4): 21 − 1 = 1 value, for a total of 7 values
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Constructing Bayesian networks

To efficiently represent full joint distributions through the chain
rule and the corresponding BNs, conditional independence relations
should be exploited whenever possible.

How can such relations be identified, and exploited?

Main issue: the chain rule provides n! equivalent expressions of
the full joint distribution of n variables, one for each possible order
between them. What is the “best” order to choose?
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Constructing Bayesian networks

Example: two possible expressions of the chain rule for the full joint
distribution of four variables, P(X1, X2, X3, X4):

P(X1|X2, X3, X4)P(X2|X3, X4)P(X3|X4)P(X4)
P(X4|X3, X2, X1)P(X3|X2, X1)P(X2|X1)P(X1)

If one knows that:
▶ X1 is conditionally independent on X2 and X4 given X3:

P(X1|X2, X3, X4) = P(X1|X3),
▶ X2 is conditionally independent on X3 given X4:

P(X2|X3, X4) = P(X2|X4),

the first expression above can be simplified as:

P(X1|X3)P(X2|X4)P(X3|X4)P(X4) ,

whereas the second one cannot.
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Constructing Bayesian networks

To identify the “best” order among variables before applying the
chain rule, two facts can be exploited:
▶ causal knowledge in the form P(effect|causes) is often easier

to obtain than diagnostic knowledge, i.e., P(causes|effect)
▶ conditional independence relations turn out to be more easily

identifiable in conditional distributions representing causal
knowledge, i.e., P(effects|cause)
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Constructing Bayesian networks
Example: we have seen that Toothache and Catch can be considered
conditionally independent given Cavity :

P(Toothache|Catch, Cavity) = P(Toothache|Cavity)

If the chain rule is applied to their full joint distribution as:

P(Toothache, Catch, Cavity) = P(Toothache, Catch|Cavity)P(Cavity)
= P(Toothache|Catch, Cavity)P(Catch|Cavity)P(Cavity) ,

it can be simplified thanks to the above assumption into:

P(Toothache|Cavity)P(Catch|Cavity)P(Cavity)

Note that the order of the variables used to apply the chain rule leads to
the term in the form P(effects|cause) highlighted in red, which allows
exploiting the conditional independence assumption.

(cont.)
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Constructing Bayesian networks

BNs corresponding to the first, general expression of the full joint
distribution P(Toothache, Catch, Cavity) through the chain rule
(left) and to the simplified expression obtained from the
conditional independence assumption (right).

Cavity

Catch Tootache

Cavity

Catch Tootache
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Constructing Bayesian networks

The above is an example of the general rule to choose the “best”
order between the variables when applying the chain rule:

select the “root cause” variables first, then the ones they
directly influence, and so on, until reaching the variables
which have no direct causal influence on the others.

The same rule allows to directly construct a BN by adding nodes
one at a time, together with the corresponding edges, without
writing the expression of the chain rule first.
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Constructing Bayesian networks: an example

You have a new burglar alarm installed at home.
It is fairly reliable at detecting a burglary, but also responds on occasion
to minor earthquakes.
You also have two neighbors, John and Mary, who have promised to call
you at work when they hear the alarm.
John always calls when he hears the alarm, but sometimes confuses the
telephone ringing with the alarm and calls then, too. Mary, on the other
hand, likes rather loud music and sometimes misses the alarm altogether.
You may be interested in different probabilistic inferences, e.g.,
estimating the probability of a burglary given the evidence of who has or
has not called.

taken from Russell and Norvig, Artificial Intelligence – A modern Approach, 2nd Ed., Pearson, 2003
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Constructing Bayesian networks: an example

First step: what random variables should be used to represent the
events of interest?

A possible choice is the following set of Boolean variables, related
to events occurring over any whole day
▶ Alarm (A for brevity): whether the alarm sounded or not
▶ Burglary (B): whether a burglary occurred or not
▶ Earthquake (E ): whether an earthquake occurred or not
▶ JohnCalls (J): whether John called or not
▶ MaryCalls (M): whether Mary called or not
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Constructing Bayesian networks: an example

One of the possible expressions of the full joint distribution
obtained using the chain rule is, e.g.:

P(A, B, E , J , M)
= P(A|B, E , J , M)P(B|E , J , M)P(E |J , M)P(J |M)P(M)

The corresponding BN, which of
course is fully connected:

Earthquake

Burglary
Alarm

MaryCalls
JohnCalls
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Constructing Bayesian networks: an example

Let us now try to identify the causal dependencies among the five
variables, that may lead to conditional independence
assumptions useful to simplify the BN.

To this aim, one can directly build the BN, adding nodes one at a
time, with the coresponding edges, without first writing the
corresponding expression of the chain rule.

Burglaries and earthquakes can be considered as “root causes”. It
can also be assumed that there are no causal dependencies among
them. Note that this is only a (reasonable) assumption, useful to
simplify the probabilistic model.
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Constructing Bayesian networks: an example

Since there is no causal dependency between burglaries and
earthquakes, any of the corresponding node can be added first to
the BN, e.g., Burglary :

Burglary

The next node to add is Earthquake, with no incoming edge from
Burglary :

Burglary

Earthquake
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Constructing Bayesian networks: an example

Both burglaries and earthquakes directly influence the state of the
alarm, but not the fact that Mary or John calls: we can assume
they will call only if they hear (or believe to hear) the alarm
sounding.

The next node to add is therefore Alarm, with incoming edges
from both Burglary and Earthquake:

Burglary

Earthquake

Alarm
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Constructing Bayesian networks: an example

What about JohnCalls and MaryCalls?
▶ both variables are directly influenced by the state of the

alarm, not by burglaries and earthquakes
▶ we can assume John and Mary do not communicate with each

other, so neither variable directly influences the other
We can therefore add any of these variables, e.g., JohnCalls, with
an incoming edge only from Alarm:

Burglary

Earthquake

Alarm

JohnCalls
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Constructing Bayesian networks: an example

We finally add MaryCalls, with an incoming edge only from Alarm:

Burglary

Earthquake

Alarm

JohnCalls
MaryCalls

Note that the resulting BN is not fully connected as the first one
shown above: it contains only 4 edges instead of 10.
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Constructing Bayesian networks: an example

It is easy to identify the marginal and conditional distributions
associated with each node:

Burglary

Earthquake

Alarm

JohnCalls
MaryCalls

P(B)

P(E)

P(A|B, E)

P(J|A)
P(M|A)

The corresponding expression of the full joint distribution is:

P(B, E , A, J , M) = P(M|A)P(J |A)P(A|E , B)P(E )P(B)
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Constructing Bayesian networks: an example

Is the above BN an exact and complete probabilistic model of the
cosidered domain?

It is likely to be only an approximate rather than exact model,
due to the assumptions made. If the assumptions are reasonable,
it might be a good approximation.

What about completeness, e.g., other possible causes of the
considered events not represented by the BN? For instance
▶ no node for Mary’s currently listening to loud music
▶ no node for the telephone ringing and confusing John

Actually all such factors are implicitly summarised in the
uncertainty associated with the links included in the BN.
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Constructing Bayesian networks: an example

The choice of not representing all possible factors explicitly is an
example of laziness and ignorance: it would be very difficult to consider
them all and evaluate their likelihood.

On the other hand, the distributions associated to a BN summarise a
potentially infinite set of circumstances in which the considered events
can happen or not, e.g.:
▶ P(A|E , B) summarises all the other causes, beside earthquakes and

burglaries, that make the alarm sound or fail to sound (passing
helicopter, high humidity, power failure, dead battery, cut wires, a
dead mouse stuck inside the bell, etc.)

▶ P(J |A) and P(M|A) summarises all the other causes, beside the
state of the alarm, that make John or Mary call or fail to call (out to
lunch, on vacation, listening to loud music, passing helicopter, etc.).

This is the way in which probabilistic models can be kept small enough to
be practically useful, albeit only approximate.



97

Constructing Bayesian networks: an example

What are the conditional independence assumptions informally
made when constructing our BN?

Burglary

Earthquake

Alarm

JohnCalls
MaryCalls

P(B)

P(E)

P(A|B, E)

P(J|A)
P(M|A)
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Constructing Bayesian networks: an example

To identify conditional independence assumptions, consider
▶ the general expression of the full joint distribution using the

chain rule for the chosen order between the variables:

P(B, E , A, J , M)
= P(M|J , A, E , B)P(J |A, E , B)P(A|E , B)P(E |B)P(B)

▶ the expression corresponding to the BN:

P(B, E , A, J , M) = P(M|A)P(J |A)P(A|E , B)P(E )P(B)

(cont.)
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Constructing Bayesian networks: an example

Comparing the corresponding terms in the two expressions above:
1. Earthquake is (unconditionally) independent on Burglary :

P(E |B) = P(E )

2. JohnCalls is conditionally independent on Burglary and
Earthquake given Alarm:

P(J |A, E , B) = P(J |A)

3. MaryCalls is conditionally independent on Burglary ,
Earthquake and JohnCalls given Alarm:

P(M|J , A, E , B) = P(M|A)
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Constructing Bayesian networks: an example

The ones listed above are the only conditional (or absolute)
independence assumptions explicitly made during the construction
of the considered BN.

Nevertheless, it can be shown that a BN also implies other
conditional independence assumptions (see later).

Attention should be paid to avoid drawing wrong conclusions
about independence relations implied by a given BN

– for instance, from the fact that there are no incoming links to
Burglary , it would be not correct to conclude that Burglary
is independent on all the other variables
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Constructing Bayesian networks: an example

To define the full joint distribution P(B, E , A, J , M), 25 − 1 = 31
probability values must be specified.

How much do the above conditional independence assumptions
simplify its definition?
▶ P(M|A): 2× (21 − 1) = 2 values,
▶ P(J |A): 2× (21 − 1) = 2 values,
▶ P(A|E , B): 22 × (21 − 1) = 4 values,
▶ P(E ): 21 − 1 = 1 value,
▶ P(B): 21 − 1 = 1 value,

for a total of 10 probability values, instead of 31.
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Constructing Bayesian networks: an example

To construct the above BN the variables have been ordered from
“root causes” to “end effects”: Burglary , Earthquake, Alarm,
JohnCalls, MaryCalls.

As a consequence, all the distributions associated to the nodes of
the BN (i.e., to the corresponding expression of the chain rule) are
of causal form, P(effect|causes), which are usually simpler to
estimate, and allow conditional independence relations to be
exploited.

What happens if one choses a different order among the variables
to construct a BN?
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Constructing Bayesian networks: an example

Consider for instance adding variables in the following order: MaryCalls,
JohnCalls, Alarm, Burglary , Earthquake.

▶ Adding MaryCalls:

MaryCallsP(M)

▶ Adding JohnCalls: if Mary calls, it is likely the alarm has sounded,
which makes it more likely that John calls: JohnCalls needs
MaryCalls as a parent

MaryCalls

JohnCalls

P(M)

P(J|M)
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Constructing Bayesian networks: an example

▶ Adding Alarm: if both call, it is more likely that the alarm has
sounded than if just one or neither call: both MaryCalls and
JohnCalls are needed as parents

MaryCalls

JohnCalls

Alarm

P(M)

P(J|M)

P(A|M, J)

▶ Adding Burglary : if we know the alarm is sounding, a call
from John or Mary does not provide additional information
about burglary: only Alarm is needed as parent

MaryCalls

JohnCalls

Alarm

Burglary

P(M)

P(J|M)

P(A|M, J)

P(B|A)
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Constructing Bayesian networks: an example

▶ Adding Earthquake: if the alarm is sounding, it is more likely
that an earthquake occurred; if we know that also a burglary
occurred, this explains the alarm, and the probability of an
earthquake would be only slightly above normal; a call from
John or Mary does not provide any additional information on
earthquakes: only Alarm and Burglary are needed as parents

MaryCalls

JohnCalls

Alarm

Burglary
Earthquake

P(M)

P(J|M)

P(A|M, J)

P(B|A)
P(E|A, B)



106

Constructing Bayesian networks: an example

The resulting BN has two more edges than the previous one, and
therefore requires more probability values to be specified.

Moreover, the required distributions are much difficult to estimate,
since they require unnatural probability judgments, and in
particular non-causal ones, e.g., assessing the probability of an
earthquake given that a burglary occurred and the alarm sounded,
P(E |B, A).
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Exercise

1. Write the expression of the
full joint distribution using the
chain rule, corresponding to
the BN on the right

MaryCalls

JohnCalls

Alarm

Burglary
Earthquake

P(M)

P(J|M)

P(A|M, J)

P(B|A)
P(E|A, B)

2. Identify the conditional independence assumptions implicitly made
during the construction of the above BN

3. Compute the number of probability values to be specified to define
the distributions associated to the above BN

4. Construct a BN using a different order among the variables:
MaryCalls, JohnCalls, Earthquake, Burglary , Alarm, and repeat
steps 1–3
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Inference in Bayesian networks
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Exact inference in Bayesian networks

As previously mentioned, the basic task of probabilistic inference
systems is to compute the posterior probability distribution of a
set of query variables Q given the observed values e of some
distinct set of evidence variables E:

P(Q|E = e)

We have already seen that, in principle, any probabilistic inference
can be carried out through the full joint distribution of all the
variables, including the ones that are not part of Q nor E, that will
be denoted with Y.
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Exact inference in Bayesian networks

For a single query variable Q (all results can be easily extended to
more query variables), we known that the posterior distribution
P(Q|E = e) can be computed through the full joint distribution
using the definition of posterior probability and the sum rule:

P(Q|E = e) = P(Q, E = e)
P(E = e) =

∑
y P(Q, E = e, Y = y)∑

q,y P(Q = q, E = e, Y = y)

If the full joint distribution is represented by a BN
▶ if E = pa(Q), then P(Q|E = e) = P(Q|pa(Q) = e), which is

already known as part of the BN definition
▶ otherwise, both the numerator and denominator of the above

expression can be computed using the expression of the chain
rule associated to the BN
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Exact inference in Bayesian networks: example

After a call by both Mary and John, one may want to know the
posterior probability distribution of a burglary:

P(B|J = true, M = true)

Using the definition of conditional probability:

P(B|J = true, M = true) = P(B, J = true, M = true)
P(J = true, M = true)

The numerator and the denominator can be rewritten in terms of
the full joint distribution, using the sum rule over all the remaining
variables.

(cont.)
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Exact inference in Bayesian networks: example

For instance, the numerator can be computed as:∑
e,a∈{true,false}

P(B, J = true, M = true, E = e, A = a)

In turn, this can be rewritten using the chain rule corresponding to
the BN:∑
e,a∈{t,f }

P(M = t|A = a)P(J = t|A = a)P(A = a|E = e, B)P(E = e)P(B)

All the conditional and prior distributions in the last expression are
known as part of the BN definition.

The denominator, P(J = t, M = t), can be computed similarly.
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Computational complexity of exact inference

The exact inference procedure shown above has an exponential
worst-case time and space complexity in the number of variables.

A practical solution is to trade exactness for a lower complexity.

To this aim, approximate inference methods based on
randomised sampling can be used, known as Monte Carlo
algorithms, which have become widespread in computer science to
estimate quantities difficult to calculate exactly.

In the following, the direct sampling family of Monte Carlo
algorithms is considered.

More efficient inference methods exist, like the Markov Chain
Monte Carlo algorithm.
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Direct sampling

Primitive element of sampling algorithms: direct sampling from a
known prior probability distribution (i.e., with no evidence).

Example: the outcome of flipping an unbiased coin can be
represented as a random variable Coin ∈ ⟨heads, tails⟩ with prior
distribution P(Coin) = ⟨0.5, 0.5⟩.

Sampling from P(Coin) is equivalent to flipping the coin.

This can be achieved, e.g., by
▶ generating a random number x with uniform distribution in

[0, 1] (e.g., using library functions of programming languages,
such as Python’s random)

▶ setting Coin = heads, if x < 0.5, and Coin = tails otherwise
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Direct sampling

The same method can be used for approximate inference in
Bayesian networks.

The sampling process consists of sampling each variable X in
topological order, i.e., after its parents pa(X ), using the probability
distribution conditioned on the values z already assigned to its
parents, P(X |pa(X ) = z).
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Direct sampling: example

A BN that describes a person’s
daily lawn routine: each
morning, she checks the
weather; if it is cloudy, she
usually does not turn on the
sprinkler; if the sprinkler is on,
or if it rains during the day, the
grass will be wet.
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Figure 13.15 (a) A multiply connected network describing Mary’s daily lawn routine: each
morning, she checks the weather; if it’s cloudy, she usually doesn’t turn on the sprinkler; if
the sprinkler is on, or if it rains during the day, the grass will be wet. Thus, Cloudy affects
WetGrass via two different causal pathways. (b) A clustered equivalent of the multiply
connected network.

function PRIOR-SAMPLE(bn) returns an event sampled from the prior specified by bn
inputs: bn , a Bayesian network specifying joint distribution P(X1, . . . , Xn)

x← an event with n elements
for each variable Xi in X1, . . . , Xn do

x[i]← a random sample from P(Xi | parents(Xi))
return x

Figure 13.16 A sampling algorithm that generates events from a Bayesian network. Each
variable is sampled according to the conditional distribution given the values already sampled
for the variable’s parents.

(cont.)
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Direct sampling: example

A possible ordering: Cloudy , Sprinkler , Rain, WetGrass

1. sample from P(Cloudy) = ⟨0.5, 0.5⟩
suppose this returns true

2. sample from P(Sprinkler |Cloudy = t) = ⟨0.1, 0.9⟩
suppose this returns false

3. sample from P(Rain|Cloudy = t) = ⟨0.8, 0.2⟩
suppose this returns true

4. sample from P(WetGrass|Sprinkler = f , Rain = t) = ⟨0.9, 0.1⟩
suppose this returns true

The outcome of the above direct sampling process is therefore:

Cloudy = true, Sprinkler = false, Rain = true, WetGrass = true
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Direct sampling: justification

Let PDS(X1 = x1, . . . , Xn = xn) denote the probability that event
(x1, . . . , xn) is generated by the direct sampling process from a BN.
Looking at the sampling process, it is easy to see that

PDS(X1 = x1, . . . , Xn = xn) =
n∏

k=1
P(Xk = xk |pa(Xk))

The right-hand side of the above expression equals by definition the full
joint distribution of the n variables, therefore:

PDS(X1 = x1, . . . , Xn = xn) = P(X1 = x1, . . . , Xn = xn)

(cont.)
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Direct sampling: justification

If N samples are drawn, denoting with NDS(x1, . . . , xn) the number of
occurrences of the event (x1, . . . , xn), we expect its frequency to converge
to its probability as N increases:

lim
N→∞

NDS(x1, . . . , xn)
N = PDS(X1 = x1, . . . , Xn = xn)

= P(X1 = x1, . . . , Xn = xn)

For instance, the sampling probability of the event in the previous
example is

PDS(Cloudy = t, Sprinkler = f , Rain = t, WetGrass = t)
= P(Cloudy = t)× P(Sprinkler = f |Cloudy = t)
×P(Rain = t|Cloudy = t)× P(WetGrass = t|Sprinkler = f , Rain = t)

= 0.5× 0.9× 0.8× 0.9 = 0.324

Therefore, for large N we expect 32.4% samples to be of this event.
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Rejection sampling in Bayesian networks

Rejection sampling produces samples from a hard-to-sample
distribution given an easy-to-sample one.

It can be used to compute a conditional probability
P(Xk = xk |E = e) from the full joint distribution P(X1, . . . , Xn)
specified by a BN:

1. generate N samples from the prior distribution P(X1, . . . , Xn)
using direct sampling

2. reject all samples that do not match the evidence
3. estimate P(Xk = xk |E = e) as the fraction of remaining

samples for which Xk = xk

The larger the number of samples, the more accurate the estimate.
Its justification is similar to that of direct sampling.
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Rejection sampling in Bayesian networks: example

Assume one wishes to estimate P(Rain = true|Sprinkler = true)
from N = 100 samples.

Among the 100 generated samples, suppose 73 have
Sprinkler = true: these samples are rejected.

Among the remaining 27 samples, assume 8 have Rain = true and
19 have Rain = false. Therefore:

P(Rain = true|Sprinkler = true) ≈ 8
27 ≃ 0.296
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Likelihood weighting in Bayesian networks

Drawback of rejection sampling: the lower the prior probability of
the evidence, P(E = e), the larger the number of rejected samples
before generating enough samples consistent with the evidence to
accurately estimate P(Xk = xk |E = e).

This inefficiency is avoided by likelihood weighting, which
generates only events that are consistent with the evidence.
Informally:
▶ set the likelihood weight w = 1.0
▶ fixing the evidence variables E to the observed values e
▶ sampling only the remaining variables Xk and Y
▶ in the count of the events where Xk = xk , each one is

weighted by the likelihood that it accords to the evidence:

w ← w × P(Ei = ei |pa(Ei)), for each Ei ∈ E



123

Likelihood weighting in Bayesian networks
An example from the previous BN, using again the ordering
Cloudy , Sprinkler , Rain, WetGrass, to compute

P(Rain = true|Sprinkler = true, Grass = true)

1. set the likelihood weight w = 1.0
2. sample from P(Cloudy) = ⟨0.5, 0.5⟩

suppose this returns true
3. Sprinkler is an evidence variable whose value is true:

w ← w × P(Sprinkler = true|Cloudy = true) = 0.1

4. sample from P(Rain|Cloudy = true) = ⟨0.8, 0.2⟩
suppose this returns true

5. WetGrass is an evidence variable whose value is true:

w ← w×P(WetGrass = true|Sprinkler = true, Rain = true) = 0.099

(cont.)
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Likelihood weighting in Bayesian networks

The outcome of the above sampling process is:

Cloudy = true, Sprinkler = true, Rain = true, WetGrass = true ,

which is counted among the events for which Rain = true with
weight 0.099.

The weight is low since the above event is a cloudy day, which
makes the sprinkler unlikely to be on.

Also the justification of the likelihood weighting algorithm is
similar to that of direct sampling.


