
University of Cagliari

MSc programs in Computer Engineering, Cybersecurity and Artificial Intelligence, and in Electronic Engineering

Artificial Intelligence

Academic Year: 2024/2025

Instructor: Giorgio Fumera, Ambra Demontis

Exercises on machine learning

1. Define: (a) a feed-forward multi-layer perceptron network with a single hidden layer, and (b) a decision
tree (trying to keep it as small as possible), to represent the Boolean function f(a, b, c) = a · b · c+ b · c.

2. Consider a two-class problem with two real-valued attributes x1 and x2, and a training set made up of
the following six examples:

• class 1: {(0.3, 0), (0.7, 0), (0.5, 0.3)}
• class 0: {(0, 0.2), (0.5, 0.7), (1, 0.2)}

Define, if possible, a consistent classifier, using: (i) a perceptron, (ii) a feed-forward multi-layer perceptron
network, (iii) a decision tree.

3. The figure below shows the training set of a two-class problem (“black squares” vs “white circles”),
characterised by two real-valued attributes x1 and x2:

x1

x2

Determine whether it is possible to obtain a consistent classifier using:

• a decision tree,

• a perceptron,

• a feed-forward multi-layer perceptron network.

For each affirmative answer define one possible consistent classifier of the corresponding type, trying to
minimise its complexity.

4. Consider the perceptron network in the figure below, where the inputs x, y and z are Boolean values
represented as 0 and 1.

(a) What is the Boolean function represented by this network?

(b) Define a decision tree that represents the same Boolean function.

−1

−1

−1

2
2

−3
2

−3

3

1

2

𝑥

𝑦

𝑧

4

3

1

5. The figure below shows the initial values of the connection weights of a perceptron which has to be used as
a two-class classifier, with two real-valued attributes x1 and x2. Assuming that the first training example
processed by the perceptron learning algorithm is x1 = 0.5, x2 = 0.5 and that its class label is t = 1,
determine whether the values of the connection weights w0, w1 and w2 will be increased, decreased or left
unchanged.

−1

𝑤$ = 1𝑥$

𝑥'

𝑦

𝑤' = −1 𝑤) = 0.25

6. Consider the following feed-forward multi-layer perceptron network with real-valued inputs x1 and x2.
Draw the corresponding decision regions in the input space, i.e., the regions of the x1x2 plane where the
network output is 0 or 1.

−1

−1

−1

−1

−1

1

0

−2

1

2.5

𝑥(

𝑥)

1

1

−1
−1

0

1

1

𝑢(

𝑢)

𝑢+

7. Consider a two-class classification problem with three real-valued attributes denoted by a, b and c, and
let the class labels be denoted by 0 and 1. Two possible classifiers are shown below: a decision tree and a
perceptron network, where symbols x, y and z denote three constant values. Do the decision tree and the
perceptron network represent identical decision regions?

B

A

C

01

0

0

< y ≥ y

< x ≥ x

≤ z > z

A

B

C

u1

u2

u3

2

–1

0
0

1
0

0

0
0

–1

–1

–1

–1

2x

y

–z

7

3

3

3

2

8. Mary is a tennis lover and would like to play tennis every day with her friend Alice, but sometimes she
has to give up due to several reasons, including weather conditions. To predict whether Mary will be
willing to play tennis given the weather conditions, Alice collected some statistics about sky conditions,
temperature, humidity and wind over 14 different days, together with Mary’s decision:

Day Sky Temperature Humidity Wind Decision

1 sunny hot high weak no
2 sunny hot high strong no
3 overcast hot high weak yes
4 rain mild high weak yes
5 rain cool high weak yes
6 rain cool normal strong no
7 overcast cool normal strong yes
8 sunny mild high weak no
9 sunny cool normal weak yes

10 rain mild normal weak yes
11 sunny mild normal strong yes
12 overcast mild high strong yes
13 overcast hot normal weak yes
14 rain mild high strong no

Now Mary would like to automatically infer a set of rules to predict Mary’s decision, in the form of a
decision tree. Assuming that the attribute Wind has already been associated with the root node, how does
the ID3 learning algorithm evaluate the discriminant capability of the attribute Sky in the node shown
below?

B

C

A D

F

E

Flu

SARS-COV2Fever

Pneumonia

Wind

Sky

weak strong

9. The figure below shows the training set of a two-class problem involving two real-valued attributes x1 and
x2, and the decision boundary produced by a perceptron (the arrow points toward the region where the
perceptron output is 1), assuming that the desired value of the perceptron output for the class “white
circles” (◦) is 1. Note that only one training example is misclassified, i.e., the “white circle” (0.5, 0.5).

2

2

1.5

1

0.5

0.5 1 1.5

–0.5–1

–0.5

X
1

X
2

(a) Determine a possible set of values for the connection weights of the perceptron.

(a) What is the value of the error function of the perceptron learning algorithm for the misclassified
training example, given the connection weights determined in the answer to question (a)?

(c) What values will the connection weights be assigned after the learning algorithm processes the mis-
classified training example?

3

Solution

1. (a) Since a single perceptron can represent both the AND and OR functions between any number of variables,
the required network can be defined in terms of two hidden units u1 and u2 that compute a · b · c and b · c,
respectively (let their outputs be x and y), and one output unit u3 which computes x+ y:

u1

u2

u3−1

−1

−1

𝑎

𝑏

𝑐

𝑥

𝑦

wa1

wb1

wc1

wa2
wb2

wc2

w02

w01

w03

wx3

wy3

To represent the AND function between n variables, x1 ·x2 · . . . ·xn, one can set the weights w1, . . . , wn of all
the input connections, e.g., to 1, which corresponds to an activation

∑n
i=0 wixi =

∑n
i=1 x1 −w0; then, to

have a non-negative activation (and thus a perceptron output equal to 1) only when all the inputs equal
1 (x1 = x2 = . . . = xn = 1), it is easy to see that the weight of the bias connection, w0, can be set to any
value in (n− 1, n], e.g., w0 = n− 0.5.

Also to represent the OR function one can set w1 = w2 = . . . = wn = 1; then, to have a negative
activation

∑n
i=1 x1 − w0 (and thus a perceptron output equal to 0) only when all the inputs equal 0

(x1 = x2 = . . . = xn = 0), the weight w0 can be set to any value in (0, 1], e.g., w0 = 0.5.

Consider now how to represent the NOT function, e.g., f(a) = a:

𝑎

−1

w1

w0

The activation of the above perceptron is w1a−w0; it should be non-negative when a = 0, i.e., −w0 ≥ 0,
wheras it should be negative when a = 1, i.e., w1 − w0 < 0. A possible choice of the two connection
weights that fulfils the above conditions is w0 = 0, w1 = −1.
Using the above results it is not difficult to see how to set the connection weights of unit u1 to represent
the function x = a · b · c. If one sets wa1 = −1, wb1 = 1 and wc1 = 1, the activation is −a+ b+ c−w01. It
should be non-negative only when a = 0, b = 1, c = 1, which implies 2− w01 ≥ 0; note that for the other
combinations of values of a, b and c the activation ranges from −1 − w01 to +1 − w01. It easily follows
that w01 can be set to any value in (1, 2], e.g., w01 = 1.5.

Similarly, to represent the function y = b · c the connection weights of unit u2 can be set to wa2 = 0,
wb2 = −1 and wc2 = 1, and consequently w02 can be set, e.g., to 0.5.

Finally, since unit u3 should represent the OR function between x and y, its connection weights can be set
to wx3 = wy3 = 1, w03 = 0.5.

The corresponding perceptron network is:

−1

−1

−1

−1
1

1

0
−1
1

1.5

0.5

0.5

𝑎

𝑏

𝑐

𝑥

𝑦

1

1

4

(b) Several different decision trees can represent the considered function. To build a small tree one can
observe that, if c = 0, then f = 0: therefore c can be conveniently associated with the root node:

c

0

0 1

...

Moreover, when c = 1, the term b · c implies that f = 1, if b = 0:

c

b0

1

0 1

0

...

1

Finally, when c = b = 1 the value of f is determined by the term a · b · c, that is, only by the value of the
variable a: f = 1, if a = 0, and f = 0, if a = 1. The complete decision tree is therefore the following one:

c

b

a

0

1

1 0

0 1

0 1

0 1

2. The training examples are shown in the figure below on the left, as white circles for class 1 and black
circles for class 0. It is easy to see that the examples of the two classes are not linearly separable, and
thus a perceptron cannot provide a consistent classifier.

x1

x2

1

1

0.3 0.70.5

0.3

0.2

0.7

x1

x2

1

1

A B0.5

0.5

5

They can be separated, instead, by a piece-wise linear boundary made up of two half-lines, like the ones
denoted by A and B in the figure above in the middle. This means that a consistent solution can be
obtained by a feed-forward multi-layer perceptron network with one hidden layer made up of two hidden
units (see figure below), whose activations correspond to the equations of line A: x2 = x1, and of line B:
x2 = 1− x1.

A

B

−1

−1

−1

𝑤!"

𝑤#"

𝑤!$

𝑤#$

𝑤%"

𝑤%$

𝑥!

𝑥#

More precisely, denoting also the hidden units as A and B, and requiring that the output of the perceptron
network should be 1 for the class of “white circles” and 0 for the class of “black circles”, a convenient
choice is to make unit A output the value 1 in the bottom-right half-plane defined by line A, i.e., x2 ≤ x1,
and to make unit B output the value 1 in the bottom-left half-plane defined by line B, i.e., x2 ≤ 1 − x1.
Accordingly, the output of the perceptron network should be y = 1, when the output of both units A and
B equals 1, which corresponds to the AND logical function.

To determine the values of the connection weights of the three units, one can leverage the formulation
to compute the equation of a line passing for two given points (x11, x21) and (x12, x22). First one should
compute the line slope: m = x22−x21

x12−x11
. Then, the slope and the coordinate of one of the two points, for

example, the first can be employed to compute the equation: x2 − x21 = m(x1 − x11). Considering the
unit A, (x11, x21) = (0, 0), (x12, x22) = (0.5, 0.5), therefore, the slope is 0.5−0

0.5−0 = 0.5
0.5 = 1. Subsituting the

first point and the slope we obtain the equation: x2 − 0 = 1(x1− 0) which is equal to x2 = x1 if we move
all the term on the same side we have −x1 + x2 = 0. Now we can take one point for which we would
like the neuron to fire, e.g., the point (1, 0). Substituting to x1 and x2 we have −1 + 0 which is lower
than 0. Therefore, the equations of the neuron, to fire in this case is −x1 + x2 ≤ 0 which is also equal
to +x1 − x2 ≥ 0. Considering the unit B, (x11, x21) = (1, 0), (x12, x22) = (0.5, 0.5), therefore, the slope is
0.5−0
0.5−1 = 0.5

−0.5 = −1. Subsituting the first point and the slope we obtain the equation: x2− 0 = −1(x1− 1)
which is equal to x2 = −x1 +1 if we move all the term on the same side we have x1 +x2− 1 = 0. Now we
can take one point for which we would like the neuron to fire, e.g., the point (0, 0.5). Substituting to x1

and x2 we have 0 + 0.5 − 1 which is lower than 0. Therefore, the equations of the neuron, to fire in this
case is x1 + x2 − 1 ≤ 0 which is also equal to −x1 − x2 + 1 ≥ 0. Finally, the weight values of the output
unit can be set as previously shown for the AND function.

The resulting perceptron network is:

A

B

−1

−1

−1

1

−1

−1

−1

0

−1

1.5

1

1

𝑥!

𝑥"

The examples of the two classes can also be separated by lines parallel to the axes, as shown in the figure
below on the left. The corresponding decision regions can therefore be represented by a decision tree, like
the one in the figre below on the right: the root node splits the attribute space through the line x1 = 0.2,
its right child splits the half-plane corresponding to x1 ≥ 0.2 through the line x2 = 0.5, and finally the
right child of the latter node splits the region delimited by x1 = 0.2 and x1 ≥ 0.2 through the line x1 = 0.8.

6

x1

x2

0.2

0.5

0.8

x1

< 0.2 ≥ 0.2

x2

< 0.5 ≥ 0.5

x1

< 0.8 ≥ 0.8

3. Also in this case the examples of the two classes are not linearly separable, thus a perceptron cannot
provide a consistent classifier. However, the black squares can be separated from the white circles by
enclosing them inside a polygon, i.e., through a convex and piece-wise linear class boundary; to this aim
a triangle is sufficient as shown in the figure below on the left:

x1

x2

x1

x2

b0

a0

c0

a

b

c
c0

A consistent classifier whose decision regions are associated with the above triangle can be obtained using
a feed-forward multi-layer perceptron network with one hidden layer made up of three units (one for each
side of the triangle). To set the connection weights it is convenient to associate the “black squares” class
with the value 1 of the network output, and to require that the output of each hidden unit equals 1 in the
corresponding half-plane containing the black squares: this way, the output unit will have to implement
the logical function AND (see the figure above on the right, where a, b and c denote the lines corresponding
to the sides of the triangle, and the small arrows point toward the regions where the output of the
corresponding hidden unit should be 1). Denoting the hidden units by a, b and c, as the corresponding
lines, and the intercepts of such lines with the axes as a0, b0 and c0 (see again the figure above on the
right), it follows that the activations of the hidden units are given by:

a : −x2 + a0 ≥ 0

b : −x1 + b0 ≥ 0

c : x1 + x2 − c0 ≥ 0

The corresponding perceptron network is shown below:

7

−1

−1

−1

−1

−1

1

0

−𝑏!

𝑐!

2.5

𝑥"

𝑥#

1

1

−1
−𝑎!

0

1

1

𝑎

𝑏

𝑐

In the case of a decision tree, the class boundaries must be defined using lines parallel to the axes. Since
the black squares can be separated by the white circles by enclosing them inside a rectangle, at least four
lines are necessary: one possible choice of these lines is shown in the figure below.

x1

x2

b0

a0

a'0

a

bb'

a'

b'0

To define the corresponding decision tree, note that the rectangular region enclosing the black squares
can be represented by the following rule:

IF x1 < b0 AND x2 < a0 AND x1 ≥ b′0 AND x2 ≥ a′0 THEN class = ■

Clearly, if any of the above conditions is not satisfied, then the corresponding point (x1, x2) lies outside
the rectangle, and can therefore be labelled as “white circle”. This leads to the following decision tree:

x1

< b0

x2

< a0 ≥ a0

x1

≥ b'0< b'0

x2

≥ a'0< a'0

8

4. (a) The activation of the upper hidden unit is 2x + 2y − 3, which is non-negative only when x = 1 and
y = 1. Therefore this unit implements the AND Boolean function, x · y.
The activation of the lower hidden unit is −3x+ 2y − 3z − 1, which is non-negative only when x = z = 0
and y = 1. Accordingly, this unit implements the Boolean function x · y · z.
Finally, denoting as u1 and u2 the output values of the hidden units, the activation of the output unit is
4u1 +3u2− 2, which is non-negative when at least one among u1 and u2 equals 1: this corresponds to the
OR Boolean function, u1 + u2.

The Boolean function represented by the whole perceptron network is therefore x · y + x · y · z.
(b) Since both operands of the OR operator in the Boolean function f = x · y+ x · y · z include the term y,
it follows that f = 0, if y = 0. It is therefore convenient to associate the root node of the corresponding
decision tree with the variable y:

y

0

0 1

...

Now the fact that f = 1 when y = 1 and x = 1 (corresponding to the first term x · y) can be represented
by adding an inner node associated with the variable x to the right child of the root node:

y

x0

0 1

0

...

1

1

Finally, when y = 1 and x = 0, the second term x · y · z implies that f = 1 when z = 0, whereas f = 0
when z = 1: this can be represented by adding a “decision stump” sub-tree to the branch corresponding
to y = 1 and x = 0:

y

x0

0 1

0 1

z

1 0

0 1
1

5. The activation of the perceptron is:

a = w1x1 + w2x2 − w0 = 1× 0.5− 1× 0.5− 1× 0.25 = −0.25 .

Since a < 0, the output is y = 0, and therefore the considered training example is misclassified. This
means that the values of the connection weights will be updated by the perceptron learning algorithm.
The corresponding error function is defined as E = −t×a = −t× (w1x1+w2x2−w0). For the considered
training example, E = 0.25. The weight update rule of the perceptron learning algorithm is:

wi ← wi −
∂E

∂wi
. (1)

9

In particular:
∂E

∂wi
= −txi, i = 1, 2;

∂E

∂w0
= t .

The rationale of the above update rule is to reduce the value of the error function, which can be achieved
by “pushing” the activation toward a higher value, if a < 0 and t = +1, or toward a lower value, if a > 0
and t = −1. For the considered values of w1, w2, x1, x2 and t, it follows that:

∂E

∂w0
= t = 1,

∂E

∂w1
= −tx1 = −0.5, ∂E

∂w2
= −tx2 = −0.5 .

From the above expressions and from Eq. (??) it is easy to see that w0 will be decreased, whereas w1 and
w2 will be increased.

6. The activations of the three hidden units are non-negative (and therefore the corresponding outputs equal
1), when the following inequalities are satisfied:

• u1 : −x2 + 1 ≥ 0,

• u2 : −x1 + 2 ≥ 0,

• u3 : x1 + x2 − 1 ≥ 0.

The corresponding regions in the input space are shown by the three dashed lines u1, u2 and u3 in the
figure below (the small arrows point toward the half-plane where the outputs of the hidden units is 1).

x1

x2

1 2

1 u1

u2

u3

It is easy to see that the output unit implements the AND Boolean function between the outputs of the
hidden units. Therefore the region where the network output equals 1 is the shaded area in the figure
above; outside this region the network output equals 0.

7. The decision rule represented by the decision tree for class 1 can be expressed as:

IF B ≥ y AND A ≥ x AND C ≤ z THEN class label = 1

If the above conditions are not satisfied, the class label assigned by the decision tree is 0.

Consider now the perceptron network. The hidden unit u1 outputs the value y1 = 1, if 2A− 2x ≥ 0; the
hidden unit u2 outputs the value y2 = 1, if B − y ≥ 0; the hidden unit u3 outputs the value y3 = 1, if
−C+z ≥ 0, i.e., if C−z ≤ 0. The output unit, in turn, outputs the value y = 1, if 3y1+3y2+3y3−7 ≥ 0,
that is, only if the output of each hidden unit equals 1 (this means that the output unit implements the
AND Boolean function). Accordingly, the network output is 1, if and only if 2A − 2x ≥ 0 and B − y ≥ 0
and C − z ≤ 0, which are the same conditions under which the output of the decision tree is 1: therefore
the decision regions of the two classifiers are identical.

10

8. The attribute Sky has three possible values: sunny, overcast and rain. Its discriminant capability,
related to the considered node of the decision tree, is computed by ID3 as the conditional entropy of the
probability density function P (Decision|Wind = strong, Sky):

H(Decision|Wind = strong, Sky) =∑
s∈{sunny, overcast, rain}

P (Sky = s|Wind = strong)H(Decision|Wind = strong, Sky = s) . (2)

The entropy of the conditional densities corresponding to each value of s,H(Decision|Wind = strong, Sky =
s), can be estimated as follows.

The node associated with the attribute Sky is reached by the six training examples whose attribute Wind
has the value strong, i.e., by training examples 2, 6, 7, 11, 12 and 14. Among them:

• Examples 2 and 11 correspond to Sky=sunny, and the corresponding decision is respectively no and
yes. Therefore the density P (Decision|Wind = strong, Sky = sunny) can be estimated as:

– P (Decision = yes|Wind = strong, Sky = sunny) = 1
2 = 0.5,

– P (Decision = no|Wind = strong, Sky = sunny) = 1
2 = 0.5.

It easily follows that the entropy of the above density function is 1.

• Examples 7 and 12 correspond to Sky=overcast, and for both of them the decision is yes. Therefore
the entropy of the (estimated) density function P (Decision|Wind = strong, Sky = overcast) is 0.

• Examples 6 and 14 correspond to Sky=rain, and for both of them the decision is no. Therefore also
the entropy of P (Decision|Wind = strong, Sky = rain) is 0.

The conditional density function P (Sky = s|Wind = strong) can be easily estimated from the frequencies
of the corresponding events in the training set: for each value of s it is easy to see that the corresponding
relative frequency equals 2/6 = 1/3 (e.g., among the six examples for which Wind=strong, two have
Sky=sunny). Therefore, from Eq. (??) one obtains:∑
s∈{sunny, overcast, rain}

P (Sky = s|Wind = strong)H(Decision|Wind = strong, Sky = s) =
1

3
(1 + 0 + 0) =

1

3
.

This value can be compared with the discriminant capability of the attribute Wind at the root node, to
see if a further split using the attribute Sky is convenient. Note that this is not requested by the text.
As the attribute Wind and the attribute Sky can assume a different number of values (the attribute Wind
can assume two different value whereas the attribute Sky three), we should compute and compare their
gain ratio.

One can start computing the information gain of the attribute Wind if used in the root node. To compute
the gain ratio, we should first compute the information gain. The information gain for the attribute Wind
is H(Decision)−H(Decision|Wind).

H(Decision|Wind) =
∑

w∈{weak, strong}

P (Wind = w)H(Decision|Wind = w) .

When Wind=weak, the decision is no for 2 training examples, whereas it is yes for 6 other examples; when
Wind=strong, the decision is no for 3 training examples and yes for 3 other ones. Therefore:

• P (Wind = weak) = 8
14 = 4

7 ,

• P (Wind = strong) = 6
14 = 3

7 ,

• H(Decision|Wind = weak) = − 2
8 log2

2
8 −

6
8 log2

6
8 , and

• H(Decision|Wind = strong) = 1.

It follows that:

H(Decision|Wind) =
4

7

(
−1

4
log2

1

4
− 3

4
log2

3

4

)
+

3

7
× 1 ≃ 0.892 .

11

The second term of the information gain for the attribute Wind is the one that we just computed, whereas
the first term is the entropy of epsilon when we do not have any node H(Decision). To compute this we
should consider the full dataset, where we have 5 No and 9 Yes. Therefore H(Decision) = − 5

14 log2(
5
14)−

9
14 log2(

9
14) ≃ 0.940. The information gain is thus 0.940−0.892 = 0.048. Then we should compute the split

information which is equal to −
∑k

i=1 pilog2(pi) with pi =
Ni

N where Ni is the number of record in the i-th
branch, while N is the number of record that arrives to that node. The split information of the attribute
Wind depends on how it splits the samples. The branch weak contains 8 samples while the branch strong
contains 6 samples, therefore the information gain is equal to − 8

14 log2(
8
14) −

6
14 log2(

6
14) ≃ 0.985. The

information gain is thus
informationgain

splitinfo
≃ 0.048

0.985 ≃ 0.049.

The information gain for the attribute Sky is H(Decision|Wind = strong) − H(Decision|Wind =
strong, sky). Note that the second term is what we have computed before. Whereas we should com-
pute the first term, which is the entropy of the branch strong of the root node wind before adding
a further node. In that branch goes: 3 examples for which the decision is No and 3 examples for
which the decision is Yes, therefore the entropy of that brench is 1. The information gain is thus
1 − 1

3 = 3−1
3 = 2

3 ≃ 0.66. This will be the numerator of our gain ratio. Now we should compute
the denominator of the gain ratio, namely the split information. If we consider the attribute Sky, the split

info is thus 2
6 log2(

2
6)−

2
6 log2(

2
6)−

2
6 log2(

2
6) ≃ 1.585. The gain ratio is thus

informationgain
splitinfo

≃ 0.66
1.585 ≃ 0.416.

The information gain for the attribute Sky when employed as a node to further split the samples arriving
in the branch strong of the attribute Wind has an information gain higher than the one of the attribute
Wind, which means that doing this further split is beneficial.

12

9. The region of the attribute space where the output of the considered perceptron equals 1 corresponds to
the half-plane defined by x1 + x2 − 2 ≥ 0.

(a) Considering the expression x1 + x2 − 2 as the activation of the perceptron, the values of the corre-
sponding connection weights are w1 = +1, w2 = +1 and w0 = 2.

(b) The value of the error function for the misclassified example (0.5, 0.5), with class label t = +1, is
given by E = −t× (w1x1 + w2x2 − w0) = −1× (0.5w1 + 0.5w2 − w0) = +1.

(c) The weight update rule is wk ← wk − ∂E
∂wk

, which leads to:

w1 ← w1 −
∂ (0.5w1 + 0.5w2 − w0)

∂w1
= 1 + 0.5 = 1.5 ,

w2 ← w2 −
∂ (0.5w1 + 0.5w2 − w0)

∂w2
= 1 + 0.5 = 1.5 ,

w0 ← w0 −
∂ (0.5w1 + 0.5w2 − w0)

∂w0
= 2− 1 = 1 .

The activation of the perceptron becomes now 1.5x1 + 1.5x2 − 1, and the corresponding decision
boundary is shown in the figure below. Now the previously misclassified training example gets
correctly classified, and all the other ones remain correctly classified.

2

2

1.5

1

0.5

0.5 1 1.5

–0.5–1

–0.5

X
1

X
2

2/3

2/3

13

