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Exercises on Bayesian networks

1. Consider the following Boolean random variables related to the state of a car: Battery (it equals false
if the battery is dead), Fuel (it equals false if the fuel tank is empty), Ignition (it equals true if the
ignition system works), Moves (it equals true if the car moves after one tries to start the engine), Radio
(it equals true if the radio works when one tries to switch it on), Starts (it equals true if the engine fires
when one tries to start it).

(a) Define a proper set of causal relations between the events corresponding to the above random vari-
ables, and write the corresponding expression of their joint probability distribution function using
the chain rule.

(b) Make suitable conditional independence assumptions, clearly motivating them, and show how they
modify the expression of the chain rule.

(c) Draw a Bayesian network representing the joint distribution obtained from point 1b.

(d) How many probability values need to be estimated to define the distributions associated to the nodes
of your Bayesian network? Can some of these probability values be set based on a priori causal
knowledge about the corresponding events?

2. Two astronomers, in different parts of the world, look at the same region of the sky using their telescopes
and count the number of stars they see. Their counts may be inaccurate for several reasons, including the
fact that their telescopes can occasionally be out of focus.

(a) Define a set of random variables to describe the above domain.

(b) Define a proper set of causal relations between the considered variables.

(c) Draw a Bayesian network to represent their joint distribution, making suitable conditional indepen-
dence assumptions.

(d) Write the corresponding expression of the joint distribution. Do you see any reasonable constraint
that some of the resulting distribution should satisfy, based on a priori causal knowledge about the
corresponding events?

3. Mary’s car has an alarm that sounds when a motion sensor detects someone entering it. The alarm and
the sensor are powered by two distinct batteries, which can be occasionally dead.

(a) Define a suitable set of random variables to represent this domain.

(b) Order these variables according to proper causal relations.

(c) Draw a Bayesian network to represent their joint distribution, according to the order defined in point
3b, making suitable conditional independence assumptions.

(d) Write the corresponding expression of the joint distribution.
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4. Headache and fever are among the symptoms of several health problems, including influenza and food
poisoning.

(a) Represent the above knowledge as a Bayesian network, defining suitable random variables and a
proper order between them. Clearly explain the conditional independence assumptions you make.

(b) Write the corresponding expression of the joint distribution.

(c) Derive an expression of the probability that a person who is suffering from headache has caught
influenza.

5. In a nuclear power station an alarm sounds and warning lights flash in the control room, when a sensor
detects that the temperature of the core exceeds a given threshold. The sensor measurement may be
incorrect (very rarely), resulting in false positive or false negative detections; this is less unlikely to
happen, when the external temperature gets too high. Occasionally, also the alarm and the warning lights
can fail; to limit joint failures, they are implemented as physically separated systems.

(a) Represent the above domain as a Bayesian network, defining suitable random variables and a proper
order between them. Clearly explain the conditional independence assumptions you make.

(b) Write the corresponding expression of the joint distribution.

(c) Derive an expression of the probability of a core overheating, when warning lights are flashing in the
control room.

6. Draw the Bayesian network that represents the joint distribution function of four random variables A, B,
C and D, assuming that the causal relations between them are D → C → B → A (i.e., D is the “root
cause”), and that no conditional independence assumption can be made. Write the full joint distribution
function using the chain rule corresponding to that Bayesian network. Assuming all four variables are
Boolean, how many probability values need to be estimated to specify the distribution functions associated
with the Bayesian network?

7. Assume that the Bayesian network below has been obtained by considering the following order between
its random variables, from root causes to end effects: A, B, C, D:

B

D

A

C

(a) Write the corresponding expression of the full joint distribution function using the chain rule.

(b) What conditional independence assumptions does the above Bayesian network encode?

(c) Assuming the variables are all Boolean, derive an expression for the conditional probability

P (A = true|C = true,D = true)

(d) Sketch the procedure for estimating the same probability above from the Bayesian network using
the rejection sampling algorithm, hypothesising at each step the sampled value of the corresponding
random variable.
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Solution

1. (a) The state of the battery and of the fuel tank can be considered as the “root causes”. The battery
state directly affects the working of the radio and of the ignition system. In turn, the states of the
fuel tank and of the ignition system directly determine whether the engine fires or not. Finally, the
state of the engine directly determines whether the car moves.

Accordingly, the considered random variables can be sorted from the “root causes” to the “end
effects” as follows: {Fuel, Battery} → {Radio, Ignition} → Starts → Moves. Note that the order
between a subset of variables inside curly brackets is not relevant. In the following, this order will
be considered: Fuel, Battery,Radio, Ignition, Starts,Moves. Denoting the random variables with
their initial letters only, for the sake of brevity, the corresponding expression of their joint distribution
function using the chain rule is:

P (M,S, I,R,B, F ) = P (M |S, I,R,B, F )P (S|I,R,B, F )P (I|R,B, F )P (R|B,F )P (B|F )P (F ) .

(b) To identify suitable conditional independence assumptions, consider the conditional distributions in
the above expression of the chain rule, from right to left:

• P (B|F ): the state of the battery and of the fuel tank can be considered independent on each
other: P (B|F ) = P (B) (this is an absolute independence relation, not a conditional one);

• P (R|B,F ): whether the radio works or not, given the state of the battery, is independent on the
state of the fuel tank: P (R|B,F ) = P (R|B);

• P (I|R,B, F ): the working of the ignition system, given the state of the battery, is independent
on the state of the radio and of the fuel tank: P (I|R,B, F ) = P (I|B);

• P (S|I,R,B, F ): given the state of the fuel tank and of the ignition system, the working of the
engine is independent on the state of the radio and of the battery (note that the battery affects
the engine only indirectly, through the ignition system): P (S|I,R,B, F ) = P (S|I, F );

• P (M |S, I,R,B, F ): given the state of the engine, whether the car moves or not is independent
on all the other factors: P (M |S, I,R,B, F ) = P (M |S).

Accordingly, the expression of the joint distribution becomes:

P (M,S, I,R,B, F ) = P (M |S)P (S|I, F )P (I|B)P (R|B)P (B)P (F ) .

(c) The corresponding Bayesian network is shown below.

Battery Fuel
𝑃(𝐵) 𝑃(𝐹)

𝑃(𝑆|𝐼, 𝐹)
𝑃(𝑅|𝐵)

𝑃(𝑀|𝑆)

Radio Ignition

Starts

Moves

𝑃(𝐼|𝐵)

(d) Remember that, to specify the unconditional distribution P (X) of any Boolean random variable
X, only one value needs to be estimated: either P (X = true) or P (X = false), since the other
value is determined by the constraint P (X = true) + P (X = false) = 1. To define the conditional
distribution P (X|Y1, . . . , Yn), given the values of n Boolean random variables Y1, . . . , Yn, either the
probability that X = true or the probability that X = false need to be estimated, for each of the
2n possible combinations of values of Y1, . . . , Yn.
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Accordingly, taking into account that all the considered random variables are Boolean:

• P (F ) and P (B) require the estimation of one probability value each, therefore 2 values are
required in total;

• P (R|I) requires one value for I = true and one for I = false; similarly for P (R|B) and P (M |S);
therefore, these distributions require 6 values in total;

• P (S|I, F ) requires one value for each of the four combinations of values of I and F , therefore 4
values in total.

The joint distribution of the considered 6 Boolean variables can therefore be specified through 2 +
6+ 4 = 12 probability values, thanks to the above conditional independence assumptions, instead of
26 − 1 = 63 values.

Some values of the above probability distributions can be set a priori, based on causal knowledge on
the corresponding events. In particular, the ignition system and the radio cannot work, if the battery
is dead, i.e., P (I = true|B = false) = P (R = true|B = false) = 0. Similarly, if the ignition system
does not work or the fuel tank is empty, the engine cannot fire: P (S = true|I = false, F ) = 0, and
P (S = true|I, F = false) = 0.

On the other hand, the ignition system may not work even when the battery is not dead, due to
several possible causes that one may not know or may not be willing to consider explicitly, such as a
broken fuel pump or a fault in the ignition system itself. Therefore, P (I = true|B = true) should not
be set to 1, to account for any other possible cause that prevent the ignition system from working.
Analogously, the engine may not fire even when the ignition system does work and the fuel tank
is not empty; therefore, the corresponding probability, P (S = true|I = true, F = true), should be
lower than 1.

2. (a) Five random variables can be used to describe the relevant information:

• M1 and M2: the number of stars counted by the two astronomers: their domain is the set of
natural numbers {0, 1, 2, . . .};

• F1 and F2: Boolean random variables representing whether the two telescopes are out of focus
(true) or not (false);

• N , the actual (unknown) number of stars in the region of the sky under observation: its domain
is the set of natural numbers.

(b) The actual number of stars N and the states of the two telescopes (F1 and F2) can be considered
as root causes; it can also be assumed that they do not affect each other. The number of stars N1

estimated by the first astronomer is directly influenced only by the actual number of stars N and by
the state of his or her telescope, F1, but not by the number of stars estimated by the other astronomer,
N2 (assuming they do not communicate with each other); similarly, N2 is directly influenced by only
N and F2.

(c) Considering the random variables ordered as F1, N, F2, N1, N2 (in agreement with the above causal
relations), the corresponding Bayesian network is:

N F2F1

N2N1

𝑃(𝐹!)

𝑃(𝑁)

𝑃(𝐹")

𝑃(𝑁!|𝐹!, 𝑁) 𝑃(𝑁"|𝐹", 𝑁)

The encoded conditional independence assumptions are:

• N and F1 are independent on each other: P (N |F1) = P (N);

• F2 is independent on both N and F1: P (F2|N,F1) = P (F2);
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• N1 is conditionally independent on F2, given N and F1: P (N1|F2, N, F1) = P (N1|N,F1);

• N2 is conditionally independent onN1 and F1, givenN and F2: P (N2|N1, F2, N, F1) = P (N2|F2, N).

(d) The corresponding expression of the joint distribution is:

P (N2, N1, F2, N, F1) = P (N2|N,F2)P (N1|N,F1)P (F2)P (N)P (F1) .

The conditional distributions P (N1|N,F1 = false) and P (N2|N,F2 = false) (i.e., the distributions
of the number of stars estimated by either astronomer when the corresponding telescope is not out
of focus, whatever the actual number of stars is) should be greater than zero when the estimate is
wrong, i.e, when N1 ̸= N or N2 ̸= N . As an example:

P (N1 = 1000|N = 1050, F1 = false) > 0 .

The reason is that the estimated number of stars may be wrong due to other possible causes beside
the telescope being out of focus, that are not explicitly taken into account in this problem formulation
(e.g., the sky may be not perfectly clear when the observation is made), or may be even unknown.

3. (a) This domain can be described by five Boolean random variables denoting the presence of someone
inside the car (I), the state (dead or not dead) of the batteries powering the sensor (Bs) and the
alarm (Ba), the state (detection or no detection) of the sensor (S) and the state (sounding or not
sounding) of the alarm (A).

(b) It is reasonable to assume that the “root causes” correspond to the presence of someone inside the
car (I) and to the states of the two batteries (Bs and Ba), and that these events do not directly affect
each other. The state of the sensor (S) is directly influenced only by the state of its battery (Bs)
and by the presence of someone inside the car (I). The state of the alarm (A) is directly influenced
only by the states of its battery (Ba) and of the sensor (S).

(c) Considering the random variables ordered as Bs, I, S,Ba, A (in agreement with the above causal
relations), the corresponding Bayesian network is:

I

Ba

Bs

A

S

𝑃(𝐵s) 𝑃(𝐼)

𝑃(𝐵a)𝑃(𝑆|𝐵s , 𝐼)

𝑃(𝐴|𝑆,𝐵a)

The encoded conditional independence assumptions are:

• I and Bs are independent on each other: P (I|Bs) = P (I);

• Ba is independent on S, I and Bs: P (Ba|S, I,Ba) = P (Ba);

• A is conditionally independent on I and Bs, given Ba and S: P (A|Ba, S, I, Bs) = P (A|Ba, S).

(d) The corresponding expression of the joint distribution is:

P (A,Ba, S, I, Bs) = P (A|Ba, S)P (Ba)P (S|I,Bs)P (I)P (Bs) .

4. (a) Four Boolean random variables can be used to represent the occurrence of the two symptoms (H for
headache and Fe for fever) and of the two health problems (I for influenza and Fo for food poisoning).
Influenza and food poisoning can be considered as the root causes. Each of the symptoms is directly
affected by both health problems. On the other hand, headache and fever can be assumed not to
directly affect each other. Analogously, food poisoning and influenza do not directly affect each
other. A possible order between the random variables is therefore: Fo, I,H, Fe. The corresponding
Bayesian network is shown below.
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I

Fe

Fo

H

𝑃(𝐹𝑜) 𝑃(𝐼)

𝑃(𝐻|𝐼, 𝐹𝑜) 𝑃(𝐹𝑒|𝐼, 𝐹𝑜)

The encoded conditional independence assumptions are:

• I is independent on Fo: P (I|Fo) = P (I);

• Fe is conditionally independent on H, given I and Fo: P (Fe|H, I, Fo) = P (Fe|I, Fo).

(b) The joint distribution function corresponding to the above Bayesian network is:

P (Fe,H, I, Fo) = P (Fe|I, Fo)P (H|I, Fo)P (I)P (Fo) .

(c) The probability to compute is P (I = t|H = t). Using the standard exact inference procedure one
obtains:

P (I = t|H = t) =
P (I = t,H = t)

P (H = t)

=

∑
fe,fo P (Fe = fe,H = t, I = t, Fo = fo)∑
fe,i,fo P (Fe = fe,H = t, I = i, Fo = fo)

=

∑
fe,fo P (Fe = fe|I = t, Fo = fo)P (H = t|I = t, Fo = fo)P (I = t)P (Fo = fo)∑
fe,i,fo P (Fe = fe|I = i, Fo = fo)P (H = t|I = i, Fo = fo)P (I = i)P (Fo = fo)

.

5. (a) This domain can be represented using five Boolean random variables: Core (the core temperature
exceeding the safety threshold), Sensor (the sensor detecting a core overheating), Heat (the external
temperature being higher than some specific value), WarningLights (warning lights flashing) and
Alarm (alarm sounding).

The “root” causes are the core temperature and the external temperature. They can be assumed
not to directly infuence each other. On the other hand, they both directly influence only the sensor
measurement. In turn, the sensor measurement directly affects both the warning lights and the
alarm, whereas the latter two can be assumed not to directly influence each other, since they are
implemented as physically separated systems. Accordingly, a possible order between the random
variables is: Heat, Core, Sensor,WarningLights,Alarm. The corresponding Bayesian network is
shown below.

Heat Core

Sensor

WarningLights Alarm

𝑃(𝐻) 𝑃(𝐶)

𝑃(𝑆|𝐻, 𝐶)

𝑃(𝑊𝐿|𝑆) 𝑃(𝐴|𝑆)
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Denoting the random variables with their initial letters, the encoded conditional independence as-
sumptions are:

• C is independent on H: P (C|H) = P (C);

• WL is independent on both C and H, given S: P (WL|S,C,H) = P (WL|S);
• A is independent on WL, C and H, given S: P (A|WL,S,C,H) = P (A|S).

(b) The expression of the joint distribution function corresponding to the above Bayesian network is:

P (A,WL, S,C,H) = P (A|S)P (WL|S)P (S|C,H)P (C)P (H) .

(c) The probability to compute is P (C = true|WL = true). Using the standard exact inference proce-
dure one obtains (the value true is shortened to t in the expressions below):

P (C = t|WL = t) =
P (C = t,WL = t)

P (WL = t)

=

∑
a,s,h P (A = a,WL = t, S = s, C = t,H = h)∑

a,s,c,h P (A = a,WL = t, S = s, C = c,H = h)

=

∑
a,s,h P (A = a|S = s)P (WL = t|S = s)P (S = s|C = t,H = h)P (C = t)P (H = h)∑

a,s,c,h P (A = a|S = s)P (WL = t|S = s)P (S = s|C = c,H = h)P (C = c)P (H = h)
.

6. By applying the chain rule in the considered order, the joint distribution can be rewritten as:

P (A,B,C,D) = P (A|B,C,D)P (B|C,D)P (C|D)P (D) .

The corresponding Bayesian network is:

C

A

D

B

𝑃(𝐷) 𝑃(𝐶|𝐷)

𝑃(𝐵|𝐶, 𝐷) 𝑃(𝐴|𝐵, 𝐶, 𝐷)

Note that the above graph is fully connected, i.e., there is an (oriented) arc between every pair of nodes.
This is a general characteristic of any Bayesian network when no conditional independence assumption
can be made on the corresponding conditional distributions.

The number of probability values that have to be estimated to specify the distribution functions associated
to the nodes of the above Bayesian network is:

• 1 value for P (D),

• 2 values for P (C|D),

• 4 values for P (B|C,D),

• 8 values for P (A|B,C,D),

for a total of 15 values. Note that this is the same number of probability values that have to be estimated
for the full joint distribution of the 4 random variables, P (A,B,C,D), that is, 24 − 1 = 15. In general,
for n Boolean random variables the number of probability values to be estimated is

∑n
k=1 2

k−1 = 2n − 1.
In general, the number of required probability values for discrete random variables increases exponentially
in the number of variables. Conditional independence assumptions are useful in practical applications to
reduce the effort required to estimate the joint distribution expressed using the chain rule.
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7. (a) The expression of the joint distribution function corresponding to the Bayesian network is:

P (D,C,B,A) = P (D|A)P (C|B,A)P (B)P (A) . (1)

(b) Taking into account the specified order between the random variables, the independence assumptions
encoded by the Bayesian network are:

• B is independent on A: P (B|A) = P (B);

• D is conditionally independent on C and B, given A: P (D|C,B,A) = P (D|A).

(c) The expression of the considered probability can be derived using the standard exact inference pro-
cedure as follows (the value true is shortened to t in the expressions on the right):

P (A = true|C = true,D = true) =
P (A = t, C = t,D = t)

P (C = t,D = t)

=

∑
b P (A = t, B = b, C = t,D = t)∑

a,b P (A = a,B = b, C = t,D = t)

=

∑
b P (D = t|A = t)P (C = t|B = b, A = t)P (B = b)P (A = t)∑

a,b P (D = t|A = a)P (C = t|B = b, A = a)P (B = b)P (A = a)
.

(d) The rejection sampling algorithm works by first generating a given number (say, N) of samples of
the four random variables, according to their joint distribution as defined by the Bayesian network,
following the topological order A,B,C,D. This is an example of how a single sample is generated:

• a sample from P (A) is drawn: assume A = false is obtained;

• a sample from P (B) is drawn: assume B = false is obtained;

• a sample from P (C|B = false,A = false) is drawn: assume C = true is obtained;

• a sample from P (D|A = false) is drawn: assume D = false is obtained.

The corresponding sample is A = false,B = false, C = true,D = false. Note that it does not agre
with the evidence C = true,D = true.

Next, all the samples that do not agree with the evidence are rejected. Let NE ≤ N denote the
number of the remaining samples; among them, let N∗ ≤ NE denote the number of samples that
correspond to the event of interest, A = true. The probability P (A = true|C = true,D = true) is
then estimated as N∗/NE.
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